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Abstract—In this paper we develop an algorithm for computing
the optimal transmission parameters, which include the trans-
mission covariance, the time-shares and the user-orderings that
minimize a particular class of objectives defined over the capacity
region of Gaussian multiple antenna multiple access channels.
This class includes objectives that are twice-differentiable, non-
increasing and convex in the users’ rates, but not necessarily
convex in the aforementioned transmission parameters. As such,
this class includes design objectives that are non-convex and
that, without the proposed algorithm, are difficult to solve in
general. The proposed algorithm is iterative with polynomial
complexity per iteration and with convergence to the global
optimal guaranteed. The utility of this algorithm is illustrated
via a numerical example for maximizing proportional fairness.

Index Terms—Multiple access channels, time-sharing, opti-
mization, convergence analysis, proportional fairness

I. INTRODUCTION

The Gaussian multiple access channel (GMAC) model

arises in various uplink communication scenarios including

cellular systems when multiple users communicate with a base

station, and satellite systems when multiple ground stations

communicate with a satellite [1]. The capacity region of

general multiple access channels was obtained in [2] and [3].

Particularizing these results to Gaussian channels, it was

shown that corner points on the boundary of the capacity

region are achieved when the signal of each user is Gaussian

distributed with an appropriate covariance and the receiver

uses successive interference cancellation (SIC) to decode the

users’ signals sequentially [4]. Other points on the boundary of

the capacity region can be obtained by time-sharing, whereby

each decoding order and collection of users’ covariance ma-

trices are used during a fraction of the signalling duration.

Achieving particular points within the capacity region of

the GMAC was considered in [5], [6] and [7], when perfect

channel state information (CSI) is available at the receiver and

the transmitters. In particular, in [5], an iterative water-filling

algorithm is considered, which, with a sum power constraint

per user, yields a rate vector on the sum-capacity facet and

the input covariance matrices that achieve it. In [6], the input

covariance matrices of all users are optimized to maximize the

sum-capacity, and those matrices are subsequently used with

time-sharing to achieve a fairness criterion. In [7], two cases

are considered: the case of small number of users, which gives

rise to a scenario in which time-sharing is feasible, and the

case of large number of users, which gives rise to a scenario in

which time-sharing is infeasible. In [7], fairness is not directly

addressed. However, the points to be achieved are those at

which the weighted sum of the rates of a given subset of

users is maximized while the rates of the remaining users are

restricted to prescribed values.

In this paper, we focus on the GMAC scenario with perfect

CSI at the receiver and transmitters. In contrast with previous

works, we consider the joint optimization of the transmission

parameters, which include the transmission covariance, the

time-shares and the user-orderings that minimize a particular

class of objectives defined over the capacity region of multiple

antenna GMACs. This class includes objectives that are twice-

differentiable, nonincreasing and convex in the users’ rates,

but not necessarily convex in the aforementioned transmission

parameters. As such, this class includes design objectives

that are non-convex and that, without the proposed algorithm,

are difficult to solve in general. The proposed algorithm is

iterative with polynomial complexity per iteration and with

convergence to the global optimal guaranteed. The utility

of this algorithm is illustrated via a numerical example for

maximizing proportional fairness among users.

II. SYSTEM MODEL AND OPTIMIZATION

The GMAC is composed of K users transmitting to one

base station. The number of transmit antennas of the k-th user

is Nk, k = 1, . . . ,K, and the number of receive antennas at

the base station is NR. The received signal is given by

yyy =
K
∑

k=1

HHHkxxxk + zzz,

where HHHk ∈ C
NR×Nk is the channel matrix of the k-th user

and xxxk ∈ C
Nk is its transmitted signal. The Gaussian noise at

the base station is denoted by zzz ∈ C
NR , which, without loss

of generality, is assumed to satisfy E[zzzzzz†] = III .



Let QQQk = E[xxxkxxx
†
k] be the covariance matrix of the signal

of user k, and let Q̄QQ = QQQ1 ⊕ · · · ⊕ QQQK be the composite

covariance matrix, that is, Q̄QQ is block diagonal with the

matrices QQQ1, . . . ,QQQK along the diagonal. We consider sys-

tems with L power constraints which can be expressed as

gℓ(Q̄QQ) ≤ 0, ℓ = 1, . . . , L. Let

P = {Q̄QQ|Q̄QQ � 0, gℓ(Q̄QQ) ≤ 0, ℓ = 1, . . . , L} (1)

be the set of all feasible Q̄QQ. This set can be assumed to be

bounded, which implies that the transmit powers are finite.

Corner points of the GMAC capacity region can be achieved

by using an SIC receiver. To achieve a particular corner, the

receiver orders the users and decodes their signals sequentially.

To decode the signal of a particular user, the receiver treats

the signals of the users interfering with it as additive noise.

After decoding, the signal of that user is stripped off from the

signals of the remaining users. Since the interference observed

in decoding the signal of a particular user depends on the

ordering, maximizing a given objective requires the receiver

to determine the optimal user ordering. Non-corner points of

the GMAC capacity region can be achieved by time-sharing.

Let π1, · · · , πK! be the set of all K! permutations, where

πi(j) refers to the user in the j-th position of the i-th ordering.

When the receiver uses πi for decoding the users’ signals, each

user k ∈ {1, . . . ,K} is able to achieve the following rate:

rki
(

Q̄QQ
)

= log

∣

∣

∣
III+

∑

j≥π−1

i
(k)HHHπi(j)QQQπi(j)

HHH
†

πi(j)

∣

∣

∣

∣

∣

∣
III+

∑

j>π−1

i
(k)HHHπi(j)QQQπi(j)

HHH
†

πi(j)

∣

∣

∣

. (2)

Our focus herein is to minimize a nonincreasing function

f : RK → R, which is convex in the GMAC users’ rates,

but not necessarily convex in the transmission paramters. We

consider the cases in which P is convex in the input covariance

martrices. For those cases, it was shown in [8] that, to find

the optimal transmission parameters, it suffices to find a vector

βββ∗ ∈ R
K! and a composite covariance matrix Q̄QQ

∗
that solve

min
βββ∈S,Q̄QQ∈P

f
(

ρρρ
(

βββ, Q̄QQ
))

, (3)

where S is the K! dimensional unit simplex, i.e.,

S ,

{

βββ ∈ R
K!

∣

∣

∣

K!
∑

i=1

βi = 1, βi ≥ 0, ∀i
}

(4)

and the k-th entry of ρρρ
(

βββ, Q̄QQ
)

is given by

ρk
(

βββ, Q̄QQ
)

=

K!
∑

i=1

βirki
(

Q̄QQ
)

. (5)

III. ALGORITHM AND CONVERGENCE ANALYSIS

In this section we develop and analyze an algorithm that

solves (3). This algorithm relies on the following result [8].

Lemma 1. For the problem in (3), let w0 = 0 and let

1) the objective f be continuously differentiable and convex

in the users’ rates (not necessarily convex in β and Q̄);

2) the weights {wk}
K
k=1 be given by

wk = −
∂f(xxx)

∂xk

∣

∣

∣

∣

xxx=ρρρ(βββ∗,Q̄QQ∗)
k = 1, . . . ,K; and (6)

3) the users be labelled so that w1 ≤ · · · ≤ wK .

Then, the time-sharing vector βββ∗ and the composite covari-

ance matrix Q̄QQ
∗

are optimum if and only if for each strictly

positive element of βββ∗, say β∗i ,

1) the permutation πi(·) follows the increasing order of the

weights {wk}
K
k=1, and

2) the composite covariance matrix Q̄QQ
∗

solves

max
Q̄QQ∈P

K
∑

k=1

(wk − wk−1) log
∣

∣

∣
III +

∑

j≥k

HHHjQQQjHHH
†
j

∣

∣

∣
. (7)

First, we note that this result does not impose any con-

straints on P . For instance, P can be nonconvex. Second,

we note that this result cannot be readily used to obtain the

optimal transmission parameters, β∗ and Q̄
∗
. This is because

the gradient of the objective at the optimum rate vector, and

hence the optimal weights in (6), are not known a priori.

A. Proposed algorithm

The proposed algorithm solves (3) iteratively. At each itera-

tion t, the algorithm uses Q̄QQ
∗
(t−1) and βββ∗(t−1), obtained at

the previous iteration, to obtain Q̄QQ
∗
(t) and βββ∗(t). In particular,

the algorithm uses (6) to compute the weights {wk(t)}
K
k=1 at

the rate vector xxx = ρρρ(βββ∗(t − 1), Q̄QQ
∗
(t − 1)). Subsequently,

Lemma 1 is used to find the vector βββ∗(t) and the composite

covariance matrix Q̄QQ
∗
(t). We will show, in Section III-B, that

f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

converges to the optimum of (3).

It remains to show how βββ∗(t) and Q̄QQ
∗
(t) are obtained. We

begin by obtaining Q̄QQ
∗
(t). To do that, let Q̄QQ

o
(t) be the solution

of (7) for the weights {wk(t)}
K
k=1. We will choose Q̄QQ

∗
(t) to

be a convex combination of Q̄QQ
∗
(t−1) and Q̄QQ

o
(t). In particular,

Q̄QQ
∗
(t) = ε(t)Q̄QQ

o
(t) + (1− ε(t))Q̄QQ

∗
(t− 1), (8)

where ε(t) solves

min
δ∈[0,1]

f
(

ρρρ
(

βββ∗(t− 1), δQ̄QQ
o
(t) + (1− δ)Q̄QQ

∗
(t− 1)

))

. (9)

Despite being generally non-convex, this optimization problem

can be easily solved by exhaustive search over δ ∈ [0, 1].
From the definition of Q̄QQ

∗
(t) and ε(t), we have

f
(

ρρρ
(

βββ∗(t−1), Q̄QQ
∗
(t)

))

≤ f
(

ρρρ
(

βββ∗(t−1), Q̄QQ
∗
(t−1)

))

, ∀t. (10)

After computing Q̄QQ
∗
(t), the vector βββ∗(t) is chosen to solve

the following convex optimization problem,

min
βββ∈S

f
(

ρρρ
(

βββ, Q̄QQ
∗
(t)

))

. (11)

Hence, it can be seen that

f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

≤ f
(

ρρρ
(

βββ∗(t− 1), Q̄QQ
∗
(t)

))

(12)

which, with (10), imply that the value of the objective is

reduced at every iteration. Boundedness of the objective imply

that the algorithm, which is summarized in Algorithm 1 below,

converges. The optimality of the point to which the algorithm

converges will be shown in Section III-B.



Algorithm 1 Computing optimum transmission parameters.

1: Initialize βββ∗(0) and Q̄QQ
∗
(0).

2: for t = 1, 2, . . . do

3: Compute a vector of weights, {wk(t)}
K
k=1, as in (6) at

the rate vector xxx = ρρρ
(

βββ∗(t− 1), Q̄QQ
∗
(t− 1)

)

.

4: Solve the convex problem in (7) with {wk(t)}
K
k=1 to

obtain Q̄QQ
o
(t).

5: Use (8) to update the covariance matrices at iteration t.

6: Find the optimum vector of (11), βββ∗(t).
7: end for

B. Convergence analysis

In this section, we will show that Algorithm 1 is guaranteed

to converge to the global optimal of (3), provided that the

conditions of the following theorem are satisfied.

Theorem 1. Suppose that Algorithm 1 is used to solve the

optimization problem in (3), i.e., minβββ∈S,Q̄QQ∈P f
(

ρρρ
(

βββ, Q̄QQ
))

,

and suppose that the following conditions are satisfied:

1) The power constraint set P is convex in Q̄QQ;

2) The objective f is second order differentiable, monoton-

ically nonincreasing , and convex in the users’ rates, ρρρ,

but not necessarily convex in βββ and Q̄QQ.

It follows that Algorithm 1 converges to the optimum βββ and

Q̄QQ, that is, if xxx∗ is the optimum rate vector, then

lim
t→∞

f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

− f(xxx∗) = 0. (13)

Proof: The proof hinges on the following result.

Proposition 1. Let xxx∗ be the optimum rate vector. Then, the

following inequality holds:

f(xxx∗) ≥ f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

+
K
∑

k=1

wk(t+1)
(

ρk
(

βββ∗(t), Q̄QQ
∗
(t)

)

−ρk
(

βββ∗(t), Q̄QQ
o
(t+1)

))

. (14)

The proof of Proposition 1 and the rest of the proof of the

theorem are provided in Appendices A and B respectively.

Theorem 1 identifies a class of problems for which Algo-

rithm 1 converges to the global optimum solution. In Sec-

tion IV we will use this algorithm to solve an instance of

such problems. Theorem 1 tightens the results in [8], where

the convergence of the algorithm is guaranteed, but not the

convergence to the global optimal.

IV. NUMERICAL EXAMPLE

We now provide an instance of (3) in which Algorithm 1

is used to solve a two-user GMAC optimization problem with

an objective that is nonconvex in the transmission parameters.

Each user has two transmit antennas and a power budget of

P = 10 dB. The destination has two receive antennas and the

channel matrices are given by

HHH1 =

(

0.32 −0.06
−0.72 −0.88

)

+ 

(

−0.15 −1.38
−1.34 −0.01

)

,

1.9
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Fig. 1. Feasible rate region and optimum rate vector of the example of
Section IV. The capacity region is shown in grey color.

HHH2 =

(

−0.21 0.29
−0.08 0.91

)

+ 

(

−0.65 0.15
0.13 1.39

)

.

For these channel matrices, it can be readily verified that the

GMAC capacity region is the one shown in Figure 1.

Our goal is to maximize the weighted proportional fair-

ness [9], provided that the sum rate exceeds a given threshold

R. In this case, the optimum transmission parameters solve

max
βββ,Q̄QQ

w1 log
(

ρ1
(

βββ, Q̄QQ
))

+ w2 log
(

ρ2
(

βββ, Q̄QQ
))

, (15a)

subject to β1 + β2 = 1, βi ≥ 0, i = 1, 2, (15b)

QQQk � 0, Tr (QQQk) ≤ P, k = 1, 2, (15c)

log
∣

∣

∣
III +HHH1QQQ1HHH

†
1 +HHH2QQQ2HHH

†
2

∣

∣

∣
≥ R. (15d)

We note that this problem is highly non-convex in βββ and Q̄QQ.

However, since the objective is to maximize a concave function

in the users’ rates, Lemma 1 can be used to characterize the

optimum transmission parameters. Unfortunately, although the

objective is nonincreasing, its second order derivative is not

bounded when the rates approach zero. To circumvent this

difficulty, we add the constraints Tr (QQQk) ≥ γ, k = 1, 2, for

a small γ > 0. These constraints ensure that the conditions of

Theorem 1 are satisfied and hence, Algorithm 1 is guaranteed

to converge to the optimum solution of (15).

Figure 1 shows the feasible rate region when R =
7 bits/s/Hz and the objective contours for w1 = 0.9 and

w2 = 0.1. The rate vector that maximizes the weighted

proportional fairness is marked by ‘+’.

Figure 2 illustrates the convergence behaviour of the pro-

posed algorithm. In particular, this figure shows the upper

bound (18) on the error at each iteration. As shown in this

figure, five iterations suffice for the error to be less than 10−8.

Another instance of (3), which goal is to minimize the total

completion time, and that can be solved with Algorithm 1, is

provided in [8].

V. CONCLUSION

In this paper we considered the optimization of a class

of non-linear objective functions defined over the multiple
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antenna GMAC capacity region. We developed an efficient

algorithm for computing the optimal transmission parame-

ters, which include the transmission covariance, the time-

shares and the user-orderings. This class includes objectives

that are twice-differentiable, nonincreasing and convex in the

users’ rates, but not necessarily convex in the transmission

parameters. As such, this class includes design objectives

that are non-convex and that, without the proposed algorithm,

are difficult to solve in general. The proposed algorithm is

iterative with polynomial complexity per iteration and with

convergence to the global optimal guaranteed. The utility

of this algorithm is illustrated via a numerical example for

maximizing proportional fairness among users.

APPENDIX A

PROOF OF PROPOSITION 1

Since f is convex, we have that [10, Proposition B.3]

f(xxx∗)− f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

≥
K
∑

k=1

(

x∗k − ρk
(

βββ∗(t), Q̄QQ
∗
(t)

))∂f(xxx)

∂xk

∣

∣

∣

∣

xxx=ρρρ
(

βββ∗(t),Q̄QQ
∗

(t)
)

,

and, recalling that the weights {wk(t+ 1)}Kk=1 are computed

as in (6) at xxx = ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

)

, we conclude that

f(xxx∗)− f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

≥
K
∑

k=1

(

ρk
(

βββ∗(t), Q̄QQ
∗
(t)

)

− x∗k
)

wk(t+ 1). (16)

Since Q̄QQ
o
(t + 1) is the composite covariance matrix that

solves (7) for the weights {wk(t + 1)}Kk=1 (cf. step 2 of the

algorithm in Section III-A), and the orderings used in βββ∗(t)
follow the increasing order of these weights, it follows that

K
∑

k=1

wk(t+1)x∗k ≤
K
∑

k=1

wk(t+1)ρk
(

βββ∗(t), Q̄QQ
o
(t+ 1)

)

. (17)

Note that the right hand side of (17) is the maximum of the

objective in (7) at iteration t + 1. Substituting (17) into the

right hand side of (16), yields (14).

APPENDIX B

PROOF OF THEOREM 1

To prove this theorem we will use Proposition 1 to upper

bound the difference of the objective in each iteration and at

the optimum. In particular, from (14) we have that

K
∑

k=1

wk(t+1)
(

ρk
(

βββ∗(t), Q̄QQ
o
(t+1)

)

−ρk
(

βββ∗(t), Q̄QQ
∗
(t)

))

≥

f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

− f(xxx∗) ≥ 0, (18)

where the second inequality follows from the optimality of xxx∗.

We will proof the theorem by showing that the left hand side

of (18) goes to zero as t goes to ∞. To do so, we define

h(δ, t) =
K
∑

k=1

wk(t+1)ρk
(

βββ∗(t), δQ̄QQ
o
(t+1) + (1−δ)Q̄QQ

∗
(t)

)

.

Using this notation, the left hand side of (18) can be expressed

as h(1, t)−h(0, t). The proof of the theorem will be completed

in two steps. First, we will show that h(1, t) − h(0, t) goes

to zero if
∂h(δ,t)

∂δ

∣

∣

δ=0
goes to zero. Second, we will show that

this derivative goes to zero as t goes to ∞.

Step 1: Recall that, in Algorithm 1, βββ∗(t) solves (11),

which is a special case of the problem in (3). As such, βββ∗(t)
must satisfy the first condition of Lemma 1 for the weights

{wk(t+ 1)}Kk=1. Now, we use the following result.

Lemma 2. Let w1 ≤ · · · ≤ wK , and let βi > 0 only if the i-th

ordering follows the increasing order of these weights. Then,

K
∑

k=1

wkρk(βββ, Q̄QQ)=
K
∑

k=1

(wk−wk−1) log
∣

∣

∣
III+

∑

j≥k

HHHjQQQjHHH
†
j

∣

∣

∣
. (19)

Proof: Let io be the identity ordering, that is, πio(k) = k,

k = 1, . . . ,K, and let βββo be a vector such that βo
io

= 1
and βo

i = 0 for all i 6= io. Then, it can be shown that (19)

holds for βββ = βββo. In the rest of cases, wherein βi > 0
for some ordering i 6= io that follows the increasing order

of the weights, it can be shown that the weighted sum rate

for the two orderings is equal, that is,
∑K

k=1wkrki(Q̄QQ) =
∑K

k=1wkrkio(Q̄QQ). Then, using (5) and the fact that
∑K!

i=1 βi =

1, we have that
∑K

k=1wkρk(βββ, Q̄QQ) =
∑K

k=1wkrkio(Q̄QQ) =
∑K

k=1wkρk(βββ
o, Q̄QQ). Hence, the equality in (19) holds.

Then, assuming that w1(t + 1) ≤ · · · ≤ wK(t + 1) and

using (19), h(δ, t) can be expressed as

h(δ, t) =
K
∑

k=1

(wk(t+ 1)− wk−1(t+ 1))

log
∣

∣

∣
III +

∑

j≥k

HHHj(δQQQ
o
j(t+ 1) + (1− δ)QQQ∗j (t))HHH

†
j

∣

∣

∣
, (20)

where w0(t + 1) = 0. The function h(δ, t) can be shown

to be concave in δ. Since Q̄QQ
o
(t + 1) solves (7) for the

weights {wk(t+1)}Kk=1, then δ = 1 solves maxδ∈[0,1] h(δ, t).



Then, from the concavity of h [10, Proposition B.3] and the

optimality of δ = 1, we have that

∂h(δ, t)

∂δ

∣

∣

∣

∣

δ=0

≥ h(1, t)− h(0, t) ≥ 0, (21)

which implies that limt→∞ h(1, t) − h(0, t) = 0 if

limt→∞
∂h(δ,t)

∂δ

∣

∣

δ=0
= 0.

Step 2: To show that limt→∞
∂h(δ,t)

∂δ

∣

∣

δ=0
= 0, we begin

by noting that the convexity of f implies that f(xxx∗) ≥
f(xxx) + (xxx∗ − xxx)⊺∇f(xxx) for all xxx. Since f is continuously

differentiable and the capacity region is bounded, then the

norms of xxx∗, xxx, and ∇f(xxx) are finite. This implies that

f(xxx∗) is bounded below if f(xxx) > −∞ for at least one xxx.

From (10) and (12), and the boundedness of f , Algorithm 1

must converge to a point. Our goal now is to show that this

point is optimal. To do so, we note that

lim
t→∞

f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

−f
(

ρρρ
(

βββ∗(t+1), Q̄QQ
∗
(t+1)

))

= 0. (22)

This, along with (10) and (12), implies that

lim
t→∞

f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t)

))

−f
(

ρρρ
(

βββ∗(t), Q̄QQ
∗
(t+1)

))

= 0. (23)

To proceed with the analysis, we define the function

ĥ(δ, t) = f
(

ρρρ
(

βββ∗(t), δQ̄QQ
o
(t+ 1) + (1− δ)Q̄QQ

∗
(t)

))

. (24)

Since Q̄QQ
∗
(t+ 1) = ε(t+ 1)Q̄QQ

o
(t+ 1) + (1− ε(t+ 1))Q̄QQ

∗
(t),

cf. (8), then, (23) can be expressed as

lim
t→∞

ĥ(0, t)− ĥ(ε(t+ 1), t) = 0. (25)

Using this observation in computing
∂ĥ(δ,t)

∂δ

∣

∣

∣

δ=0
yields

∂ĥ(δ, t)

∂δ

∣

∣

∣

∣

δ=0

=

K
∑

k=1

∂f(xxx)

∂xk

∣

∣

∣

∣

xxx=ρρρ(βββ∗(t),Q̄QQ∗(t))

×
∂ρk

(

βββ∗(t), δQ̄QQ
o
(t+1) + (1−δ)Q̄QQ

∗
(t)

)

∂δ

∣

∣

∣

∣

δ=0

. (26)

Recall that (cf. Algorithm 1) for k = 1, . . . ,K, wk(t + 1) =

−∂f(xxx)
∂xk

∣

∣

∣

xxx=ρρρ(βββ∗(t),Q̄QQ∗(t))
. Hence,

0 ≤
∂h(δ, t)

∂δ

∣

∣

∣

δ=0
= −

∂ĥ(δ, t)

∂δ

∣

∣

∣

δ=0
, (27)

where the first inequality follows from (21). Using (27), to

show that limt→∞
∂h(δ,t)

∂δ

∣

∣

δ=0
= 0 it suffices to show that

limt→∞
∂ĥ(δ,t)

∂δ

∣

∣

δ=0
= 0. We will proceed by contradiction.

In particular, suppose that limt→∞
∂ĥ(δ,t)

∂δ

∣

∣

δ=0
6= 0, then there

exists a γ > 0 such that for all t0 we can find some t ≥ t0

with
∂ĥ(δ,t)

∂δ

∣

∣

δ=0
≤ −γ. Since the second order derivative of

f is bounded, we can find D > 0 such that, for all δ and t,
∂2ĥ(δ,t)

∂δ2
≤ D. Integrating both sides of this inequality twice

and using the fact that
∂ĥ(δ,t)

∂δ

∣

∣

∣

δ=0
≤ −γ yields

ĥ(δ, t) ≤
D

2
δ2 − γδ + ĥ(0, t), (28)

Recalling that ε(t) solves (9), we have ĥ(ε(t+1), t) ≤ ĥ(δ, t)
for all δ ∈ [0, 1]. Then, from (28),

ĥ(ε(t+ 1), t)− ĥ(0, t) ≤ min
δ∈[0,1]

D

2
δ2 − γδ. (29)

Note that δ = 0 cannot minimize the right hand side of (29).

Since the derivative at δ = 0 equals −γ which is strictly

negative, we conclude that

min
δ∈[0,1]

D

2
δ2 − γδ < 0. (30)

Using (25) and recalling that ĥ(ε(t+1), t) ≤ ĥ(0, t), we have

that, for all λ > 0, there exists a t0 such that for all t ≥ t0

ĥ(0, t)− ĥ(ε(t+ 1), t) < λ. (31)

Using (30), we can take λ = −
(

minδ∈[0,1]
D
2 δ

2− γδ
)

, which

implies that the inequality in (31) contradicts the one in (29),

which shows that indeed limt→∞
∂ĥ(δ,t)

∂δ

∣

∣

δ=0
= 0.
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