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Abstract—Resource allocation in heterogeneous wireless net-
works is a complex problem. This letter addresses this problem
maximizing the sum of logarithms of received rates. From this
function, and using the Karush-Kuhn-Tucker (KKT) conditions,
this paper proposes an iterative algorithm for allocating re-
sources, which is much faster than conventional techniques. This
fast response can be used to optimize larger regions, getting closer
to the performance of global and centralized algorithms.

I. INTRODUCTION

HETEROGENEOUS networks (HetNets) was the name
given in 2009 by the Third Generation Partnership

Project (3GPP) to advanced cell structures where additional
nodes, like pico/femto-cells or relays, are deployed to im-
prove overall capacity. HetNets pose significant conceptual
and practical challenges to the state of the art. One of those
challenges is the management of interference. Apart from the
identification of white spaces with spectrum sensing, and the
exchange of information between network nodes [1], power
control is another evident means to reduce interference. In
[2], the authors investigated this solution and provided a link
budget analysis. In [3], Bernardo et al. proposed a joint self-
optimization of spectrum assignment and transmission power
for femto-cells. Finally, Park et al. studied a beam subset selec-
tion strategy to reduce interferences between macro and femto-
cells [4]. In general, different methods can self-configure the
HetNet in such a way that there is no interference to/from the
different nodes. This paper focuses on such interference-free
scenarios for HetNets.

A different and less studied problem is dynamic resource
allocation. Due to the inherent complexity of resource alloca-
tion in HetNets, most of the authors agree on the need of new
distributed mechanisms [5]. A common approach consists in
clustering network nodes that may coordinate in the usage of
resources with different techniques, like [6], [7]. In [6], Xiang
et al. proposed a two-phase method that uses an heuristic and
convex optimization to distribute resources, and, then, allo-
cates power to the nodes in the HetNet. However, this kind of
approach is simplistic since it assumes that users are attached
to one node. Moreover, the scheduler only aims at increasing
the system throughput, not considering any fairness between
users. Lee et al. [7] addressed intercell fairness proposing an
iterative water-filling mechanism. However, again, this work
attaches users to one node.
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This paper addresses the optimization of the resource allo-
cation process in terms of fairness. Moreover, users are not
attached to any node, and, hence, the node —or nodes—
that communicates with each user is optimized too. The
formulation presented in Section II results in a convex problem
(CP), which can be solved using interior-point methods. In
Section III, we present an alternative algorithm based on
successive Linear Programs (LPs), which can obtain the opti-
mum in a significantly shorter amount of time, compared with
interior-point methods. Section IV proves that this efficient al-
gorithm reaches the optimum solution of the original problem.
Finally, Section V presents a performance evaluation of the
proposed algorithm with respect to an interior-point method.

The advantage of fast convergence algorithms is that larger
clusters can be used; which, at the end, means that the dis-
tributed algorithm approaches the performance of centralized
solutions.

II. SYSTEM MODEL AND OPTIMIZATION

Let I be the number of users in the system, and K the
number of nodes. Moreover, let Tik be the effective throughput
per resource unit (r.u.) that user i can obtain from node k with
its current channel. The objective of this work is to maximize
the sum of the rate logarithms,

Maximize f(ρρρ) =
I∑

i=1

log

(
K∑

k=1

ρikTik

)
, (1a)

subject to ρik ≥ 0, if Tik > 0, ∀i, k, (1b)
ρik = 0, if Tik = 0, ∀i, k, (1c)

gk(ρρρ) =
I∑

i=1

ρik − ρmax k ≤ 0, ∀k, (1d)

where ρik is the quantity of resources allocated to the i-th user
in the k-th node, ρρρ is the vector of all ρik, and ρmax k > 0
is the maximum quantity of resources of the k-th node. Note
that

∑K
k=1 ρikTik is the bit rate allocated to the i-th user. The

optimization variable of (1) is the vector ρρρ. This formulation
assumes that it is possible to serve users from several nodes
at the same time. Fairness is given by the logarithmic law.

For the rest of the paper, we assume that all users are in the
coverage area of at least one node and all nodes have at least
one user in their coverage areas. Note that, otherwise, we could
always eliminate that user or node from the optimization.

The problem (1) is convex, since we are maximizing a
concave function subject to linear constraints. Moreover, the
duality gap is zero, since (1) satisfies Slater’s condition. There-
fore, the Karush-Kuhn-Tucker (KKT) conditions are necessary
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and sufficient for optimality. The KKT conditions of (1) are

(1b)-(1d), (2a)
λik ≥ 0, if Tik > 0, ∀i, k, (2b)
µk ≥ 0, ∀k, (2c)
λikρik = 0, ∀i, k, (2d)
µkgk(ρρρ) = 0, ∀k, (2e)
−Gik(ρρρ)− λik + µk = 0, ∀i, k, (2f)

where λik are the dual variables associated with constraints
(1b) and (1c), µk are the dual variables associated with con-
straints (1d), and Gik(ρρρ) = ∂f(ρρρ)/∂ρik = Tik/(

∑K
l=1 ρilTil)

is the gradient of f(ρρρ). If we find some ρ̂ik, λ̂ik and µ̂k such
that they satisfy (2), then ρ̂ρρ, defined as the vector of all ρ̂ik,
is the optimum solution of (1).

This problem can be solved numerically using interior-
point techniques. However, the complexity of interior-point
methods for general convex problems has not been bounded
yet. Therefore, the resolution of (1) may require a non-viable
amount of time. This would mean the reduction of the cluster
size, with small K and I . However, the KKT conditions can
give us very useful hints to find a more efficient algorithm.
More specifically, let us assume Tik > 0, which is true for at
least one user in the k-th node. Then, Gik(ρ̂ρρ) > 0. Since λ̂ik

is non-negative, then, necessarily, µ̂k > 0. This means that all
nodes have to be using all their resources. What is even more
interesting is that the gradient of all users consuming resources
in the k-th node must be equal to µ̂k, and, hence, equal to each
other. This property highlights a relevant structure of optimum
solutions that can be exploited to design an efficient algorithm.

III. OPTIMUM AND EFFICIENT RESOURCE ALLOCATION

The proposed resource allocation algorithm is based on
the resolution of several optimization problems that can be
solved as LPs. This section presents these problems and how
to formulate them. Next section proves the optimality of the
final solution. Let us define I(1)

k , · · · , I(r)
k , · · · as a users sets

succession for the k-th node, where I(r)
k ⊆ {1, · · · , I} and r

is the iteration index. Moreover, let Φ(I(r)
1 , · · · , I(r)

K ) be the
following partial optimization problem:

Maximize
I∑

i=1

K∑
k=1

ρikTik, (3a)

subject to ρik ≥ 0, ∀i ∈ I(r)
k , k, (3b)

ρik = 0, ∀i ̸∈ I(r)
k , k, (3c)

gk(ρρρ) ≤ 0, ∀k, (3d)

Gik(ρρρ) = Gjk(ρρρ), ∀i, j ∈ I(r)
k , k, (3e)

Gik(ρρρ) ≥ Gjk(ρρρ), ∀i ∈ I(r)
k , j ̸∈ I(r)

k , k.(3f)

Note that (3) is not a LP, since (3e) and (3f) are not
linear functions of ρρρ. However, these constraints can be easily
transformed into linear functions, since

Gik(ρρρ) = Gjk(ρρρ) ⇔
∑K

l=1 ρilTil

Tik
=

∑K
l=1 ρjlTjl

Tjk
, (4)

Gik(ρρρ) ≥ Gjk(ρρρ) ⇔
∑K

l=1 ρilTil

Tik
≤
∑K

l=1 ρjlTjl

Tjk
, (5)

for all Tik > 0 and Tjk > 0. For the other cases, where
Tik = 0 and/or Tjk = 0, note that, if Tjk = 0, (3f) and (5)
reduce to Gik(ρρρ) ≥ 0, which is ensured by (3b). Thus, these
constraints are redundant. Finally, the users sets are going to
be selected in such a way that, if i ∈ I(r)

k , then Tik > 0.
Consequently, although (3) is not a LP, it can be solved with
an equivalent LP.

The users in I(r)
k are those allowed to consume resources in

the k-th node. The objective of (3) is to maximize the sum rate,
subject to certain constraints. Constraints (3b)-(3d) are related
with (1b)-(1d). (3e) reflects the fact that all users must have
the same gradient, if they consume resources in the same node.
Finally, the relevance of (3f) will be shown in Section IV.

We define the partial solution ρ̃
(r)
ik as the solution of

Φ(I(r)
1 · · · I(r)

K ), ρ̃ρρ(r) as the vector of all ρ̃(r)ik , and the distance
between two resource allocation vectors ρρρ and σσσ as

d(ρρρ,σσσ) =

√√√√ I∑
i=1

K∑
k=1

(Gik(ρρρ)−Gik(σσσ))
2
. (6)

Theorem 1: There is a succession of users sets for each
node such that

lim
r→∞

d
(
ρ̃ρρ(r), ρ̂ρρ

)
= 0. (7)

Proof: This paper is devoted to prove this theorem.
Note that if d(ρρρ,σσσ) = 0 then gradients are equal, which

means that data rates allocated to the users are the same.
Consequently f(ρρρ) = f(σσσ). This theorem states that, with the
correct succession of sets, we can approach to the optimum
solution of (1) as much as desired. We are going to prove
Theorem 1 finding the succession of users sets that satisfy
(7).

A. Users sets updating

After solving the r-th problem Φ(I(r)
1 · · · I(r)

K ), the user sets
can be updated following

I(r+1)
k = A(r+1)

k ∪ B(r+1)
k ∪ C(r+1)

k , (8)

where A(r+1)
k = {i : i ∈ I(r)

k , gk(ρ̃ρρ
(r)) < 0}, B(r+1)

k =

{i : ρ̃
(r)
ik > 0}, and C(r+1)

k = {i : i ̸∈ I(r)
k , Gik(ρ̃ρρ

(r)) =

Gjk(ρ̃ρρ
(r)), j ∈ I(r)

k }. Although the formulation of (8) might
seem complex, it is very intuitive. The set A(r+1)

k includes all
users that were previously in the user set, but only if the k-th
node has some free resources, otherwise A(r+1)

k is empty. The
set B(r+1)

k includes all users that strictly consume resources
in the k-th node, i.e. the users whose ρ̃

(r)
ik is strictly greater

than zero. It is easy to see that, if the node has some free
resources, then B(r+1)

k ⊆ A(r+1)
k . With this updating, we are

maintaining the users in the k-th user set as long as the node
has free resources. If saturation is reached, then we eliminate
those users that are not actually using node k. Moreover, this
ensures that, if I(1)

k is not empty, then no set I(r)
k will be

empty. The set C(r+1)
k adds those users that were not in the

k-th user set and have the same gradient as the users in it.
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B. Initial users sets

Before describing the initial users sets, let us introduce
some definitions that are going to be used throughout this
section. Let k̂i be the best node for the i-th user, that
is, Tik̂i

≥ Tik for all k. Moreover, let K be the set of
nodes that are the best ones for at least one user, that is,
K = {k : k = k̂i for at least one i}. Then, the initial users
sets are chosen as

I(1)
k = {i : k̂i = k}, ∀k ∈ K, (9)

I(1)
k =

{
argmax

i

Tik

Tik̂i

}
, ∀k ̸∈ K. (10)

These sets have some important properties. First, all users
belong to one set at least. Second, all users sets are non-empty.
Third, if k ̸∈ K, then I(1)

k has just one user. Forth, if i ∈ I(1)
k ,

then Tik > 0. Finally, the feasible region of Φ(I(1)
1 , · · · , I(1)

K )
is non-empty, and, hence, it is a feasible problem. In order
to proof the last statement, we are going to build a feasible
resource allocation. More specifically, make ρik = α if k = k̂i,
and ρik = 0 otherwise, where α > 0 has to be selected to
satisfy (3d). Then,

Gik(ρρρ) =
Tik

αTik̂i

≤ 1

α
= Gik̂i

(ρρρ). (11)

This means that (3e) and (3f) are satisfied for the nodes in
K, since Gik̂i

(ρρρ) = Gjk̂j
(ρρρ) ≥ Gjk̂i

(ρρρ). Moreover, if k ̸∈ K
and i ∈ I(1)

k , then Tik/Tik̂i
≥ Tjk/Tjk̂j

, which at the end
means that Gik(ρρρ) ≥ Gjk(ρρρ). (3e) is not a problem for nodes
k ̸∈ K, since they just have one user.

IV. PROOF OF OPTIMALITY

The proof presented in this section is divided into three
steps. In the first step, we show that all partial optimization
problems are feasible, which is important to ensure that
they have a solution. In the second step, we show that, if
ρ̃ρρ(r) is not optimum for (1), then there is at least one k

such that I(r)
k ̸= I(r+1)

k . In the third step, we show that
Gik(ρ̃ρρ

(r)) ≥ Gik(ρ̃ρρ
(r+1)) for all i, k and r. Moreover, we show

that, if ρ̃ρρ(r) is not optimum for (1), then there is at least one i
and one k such that Gik(ρ̃ρρ

(r)) > Gik(ρ̃ρρ
(r+1)). Assuming that

these three steps are true, the gradients continuously decrease
if the partial solutions are not optimum for (1), and hence,
they are different. Consequently, there must be some difference
between the users sets of two consecutive algorithm iterations.
Since all the combinations of user sets are finite —the number
of subsets of a finite set is finite too,— then the algorithm must
converge, and we must reach an iteration r0 < ∞ in which
Gik(ρ̃ρρ

(r)) = Gik(ρ̃ρρ
(r+1)) for all i, k and r ≥ r0. However,

this convergence is not possible if ρ̃ρρ(r) is not an optimum
solution of (1). As a consequence, the algorithm presented in
Section III must converge to an optimum solution of (1) in a
finite number of iterations. This proves Theorem 1.

A. First step

We have already shown the feasibility of the first partial
problem. For any other iteration, ρ̃ρρ(r) is a feasible point of
Φ(I(r+1)

1 · · · I(r+1)
K ). In order to see this, we have to look at

the changes performed in the user sets in (8), and see if the
solution is still feasible with those changes. First, let us assume
that i ∈ I(r)

k and i ̸∈ I(r+1)
k . This means that the node ran out

of resources and the user was not consuming any of them. For
the r+1-th partial problem, ρ̃(r)ik satisfies (3c), and Gik(ρ̃ρρ

(r))

satisfies (3f) with equality. Let us assume now that i ̸∈ I(r)
k

and i ∈ I(r+1)
k . Then, Gik(ρ̃ρρ

(r)) = Gjk(ρ̃ρρ
(r)) for any j ∈

I(r)
k . For the r+ 1-th partial problem, ρ̃(r)ik satisfies (3b) with

equality, and Gik(ρ̃ρρ
(r)) satisfies (3e). Therefore, despite the

changes performed to the users sets, the r-th partial solution
is a feasible point of the r + 1-th partial problem.

B. Second step

The objective function (3a) is strictly increasing and un-
bounded. Therefore, the partial solutions are always reached
in the hull of the feasible set. This means that the objective
(3a) cannot be increased because of some inequalities that are
satisfied as equalities.

Let us assume that, for a given k, gk(ρ̃ρρ
(r)) < 0. Hence,

ρ̃ρρ(r) is not optimum for (1), as stated in Section II. In this
case, the constraints (3b)-(3d) are not preventing the variation
of ρ̃ρρ(r). Since ρ̃ρρ(r) is the partial solution, this leads to two
cases: ρ̃ρρ(r) cannot be further modified because of (3e), case
(a); or because of (3f), case (b). In case (a), we can see that
there is another node l, different from k, such that i ∈ I(r)

k

and i ∈ I(r)
l , and another user j ∈ I(r)

l cannot increase its
gradient because it has no access to more resources. This is
the reason why it is not possible to increase ρ̃

(r)
ik . That would

increase Gil(ρ̃ρρ
(r)), which is not possible because of (3e). This

directly leads to gl(ρ̃ρρ
(r)) = 0 and ρ̃

(r)
il = 0. Consequently,

i ̸∈ I(r+1)
l because of (8), which produces a change in the

user set l. In case (b), there is a node l, which might be the
same k, and a user j, which cannot increase its gradient, such
that i ∈ I(r)

l , j ̸∈ I(r)
l , and Gil(ρ̃ρρ

(r)) = Gjl(ρ̃ρρ
(r)). Then, from

(8), j ∈ I(r+1)
l , which produces a change in the user set l too.

Let us assume now that gk(ρ̃ρρ
(r)) = 0, for all k. In this

situation ρ̃ρρ(r) is an optimum solution of (1). In order to prove
that, we are going to find some λik and µk such that they
satisfy (2). Let us make λik = 0 for all i ∈ I(r)

k , and
µk = Gik(ρ̃ρρ

(r)), for any i ∈ I(r)
k since all of them are

equal. The users that are not in I(r)
k are not consuming any

resource of this node. Therefore, ρ̃ik = 0, and we can set any
positive value for λik. Let us make λik = µk−Gik(ρ̃ρρ

(r)) ≥ 0,
for all i ̸∈ I(r)

k , which is non-negative thanks to (3f). As a
consequence, these dual variables satisfy (2), and the resource
allocation vector ρ̃ρρ(r) is optimum for (1).

C. Third step

Let us prove that Gik(ρ̃ρρ
(r)) ≥ Gik(ρ̃ρρ

(r+1)) for all i, k and
r. Let ρρρ be a certain resource allocation vector that is feasible
for the r + 1-th partial problem, and let Gik(ρρρ) > Gik(ρ̃ρρ

(r)),
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for a certain i and k. If that is true, the rest of users consuming
resources in the k-th node must have a greater gradient too,
due to (3e). Moreover, if the gradients in the k-th node are
greater, the gradients of these users in other nodes they are in
coverage will be greater too. If any of these users is in another
user set, this effect is propagated to the users of that set. A
user is not affected only if it is completely isolated from the
user and node where this increment was originated. However,
if the user is isolated, it could not use the resources freed by
other users. Therefore, the increment of the gradients does not
benefit anyone, and it reduces the value of the objective (3a).
Then, ρρρ cannot be the solution of the r+1-th partial problem.

We now prove that, if ρ̃ρρ(r) is not optimum for (1), there
is one i and one k such that Gik(ρ̃ρρ

(r)) > Gik(ρ̃ρρ
(r+1)). It is

important to recall that, if ρ̃ρρ(r) is not optimum for (1), then
there is a k such that gk(ρ̃ρρ

(r)) < 0. Let i ∈ I(r)
k , then ρ̃

(r)
ik

has not a higher value because there is an l and another user j
that cannot use more resources, such that i ∈ I(r)

l and either
j ∈ I(r)

l and gl(ρ̃ρρ
(r)) = 0, previous case (a), or j ̸∈ I(r)

l

and Gil(ρ̃ρρ
(r)) = Gjl(ρ̃ρρ

(r)), previous case (b). The changes
performed in the user sets ensure that i ̸∈ I(r+1)

l in case (a)
and j ∈ I(r+1)

l in case (b). Thus, the i-th user will strictly
increase its gradient from the r-th to the r + 1-th iteration,
since it has access to free resources at least in node k, and
the constraints that avoided that increment in the r-th partial
problem do not prevent it in the r + 1-th partial problem.

V. PERFORMANCE EVALUATION

This section presents a performance study of the Optimum
and Efficient Resource Allocation (OERA) mechanism of
Section III in terms of computation time. As a reference,
the CP (1) was solved using an Interior-Point Algorithm
(IPA). The partial problems of OERA were solved using the
simplex algorithm for LPs. Although simplex has a non-
polynomial worst case cost, in average, it is quite efficient.
Both techniques were implemented in MATLAB, where we
used the interior-point solver of fmincon.m, and the simplex
solver of linprog.m.

The simulation scenario was a squared area with a variable
side length, which was wrapped around like a torus. Nodes
and users were randomly distributed, with 10 nodes/km2 and
150 users/km2. The system had a power of 1 W/km2, which
was randomly split into the nodes. The noise power at the
user terminals was set to 10−13 W, and the path loss was
computed as 150+45 log10(rik) dB, where rik is the distance,
in km, between the i-th user and the k-th node. The available
resources were the bandwidth, which was set to 3 MHz for
each node, and the r.u. was 1 Hz. For the sake of simplicity, the
effective throughput per r.u. was calculated using the Shannon
limit but assuming a sensitivity of -113 dBm. No shadowing
or fast-fading was considered. Results were averaged for a
total of 100 seeds. All simulations were carried out in an Intel
Core2 Quad Processor Q8200, and with equal conditions.

The main result is shown in Figure 1, where OERA was
always faster than IPA. The relevant points are those of areas
greater than 0.1 km2, since, for smaller areas, there is just
one node, and it is possible to find a closed formula for the
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Fig. 1. Average time needed to find
the solution of (1).
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Fig. 2. Average number of partial
problems of the OERA.

solution of (1). In any case, those points are interesting because
they establish the starting points of the posterior evolution.
The time required by IPA increases much faster than the time
required by OERA. The slope of OERA is always around 2 in
logarithmic scale, which means a quadratic law with respect
to the area. However, the slope of IPA always increases, and
it goes beyond 4 for areas greater than 1 km2.

The weakness of the OERA is the need for several partial
problems. We know that the number of problems to be solved
is bounded, but this bound is quite big, and not tight. Figure 2
shows the average number of partial problems required to
find the optimum solution. As it can be seen, the number of
problems increases very slowly with the area.

VI. CONCLUSION

This paper has proposed a new algorithm to fairly allocate
resources in interference-free heterogeneous networks. The
key advantage is its significantly lower complexity, in terms of
computation time. This reduced time can be used to optimize
larger regions, achieving a better and global optimization.
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