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Abstract: Dynamic Resource Allocation (DRA) algorithms set up different 

connections over the same resources and perform a scheduling policy to 

distribute the resources usage. Recently, intelligent DRA techniques based on 

Hopfield Neural Networks computational methods have been proposed, 

showing their potential for solving this kind of complex optimization problems. 

However, the initial algorithms suffer from severe instability problems impacting 

performance. This paper addresses these specific limitations stressing the 

proper neuron dynamics and proposing an efficient energy formulation and an 

optimum calculation of the weighting coefficients. These changes result in a 

maximum resource utilization together with an optimized neural network 

convergence. 

 

I. INTRODUCTION 

Dynamic Resource Allocation (DRA) algorithms have been widely used to fairly 

distribute the scarce radio resources of mobile and wireless systems. The main 

objectives of the DRA algorithms are to maximize the system capacity 

(bandwidth utilization) and to fairly distribute the resources among the different 

connections, while satisfying users Quality of Service (QoS). Such algorithms 
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require a multi-objective optimization problem to be solved, which entails an 

enormous search space (the DRA is a NP-complete optimization problem). 

Besides, the DRA algorithm has to operate in real time, which complicates 

obtaining sufficiently good solutions. Most of the techniques reported so far, see 

e.g. [1]-[4], are either incapable of achieving optimum resource allocation or 

cannot operate in real time.  

Hopfield Neural Networks (HNN) are fast and parallel combinatorial optimizers 

which have been recently proposed as an effective real time solution to fairly 

distribute and maximize the resources usage [5]. This seminal work by Ahn and 

Ramakrishna has further inspired the recent application of HNN-DRA schemes 

within UMTS [6]. However, the HNN-DRA scheme proposed in [5] suffers from 

important limitations, which may carry an underestimation of the actual potential 

of HNN for solving the DRA optimization problem. Firstly, the proposed neurons 

dynamics formulation is unable to guarantee the system convergence towards 

the energy minimum what raises a reasonable doubt about the validity of this 

solution. Secondly, with the current formulation, the users whose individual 

bandwidth requirement contributes to an aggregated demand that exceeds the 

overall system resources available, instead of being individually penalized, 

affect the complete system operation. This fact, together with an improper 

weighting coefficients calculation, leads to unstable non-optimal solutions which 

reduces the overall system performance. The aim of this paper is hence 

twofold: on the one hand, to present the solution to the aforementioned HNN 

dynamics handicaps of [5], and on the other hand, to demonstrate the feasibility 

of optimum user-centric resource allocation through an enhanced HNN 

formulation and a proper weighting coefficient calculation. 
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II. HNN DYNAMICS 

Hopfield Neural Networks are a type of recurrent NN completely characterized 

by an energy function E  that describes their dynamics (i.e., the time evolution 

of the HNN). See the main contribution of Hopfield in [7] and [8]. HNNs have 

been widely used in various scientific domains [5],[6],[9] providing feasible 

solutions to very complex optimization problems within a very short time. From 

the original formulation of the energy function in [7], Abe [9] obtained the 

following HNN dynamics equation: 

 
1i

i i

dU E

dt C V

∂= −
∂

 (1) 

where iU  is the input tension to the i-th neuron, iV  is the corresponding output, 

both related by the gain function ( )i i iV g U= , and iC  is the input capacitance. 

This equation implies that stable solutions (i.e., 0idU dt = ), occur at energy 

minima.  

Despite the most commonly used gain function is the sigmoid with a finite shape 

parameter which entails (1), an infinite shape parameter can be assumed [8]. 

This approximation simplifies the identification of the hardware elements (i.e., 

the interconnection matrix and the bias) but changes the HNN dynamics 

equation. Ahn assumed an infinite shape parameter what led him to the 

following HNN dynamics equation [5]: 

 
1i i

i i i i

dU UE

dt C V C R

∂= − −
∂

 (2) 

where iR  is the equivalent input resistance.  

As it can be observed, in case iU  is not equal to zero HNN stable states do not 

correspond with the energy minima (if 0idU dt =  then 0i i iE V U R∂ ∂ = − ≠ ). 
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This fact is critical, since the energy function is designed to be minimal for the 

desirable solutions. Only if the shape parameter is infinite then 0iU ≈ , and 

therefore the system reaches the energy minimum. However, the consideration 

of an infinite shape parameter makes neurons to take only two values, i.e. the 

maximum and minimum, involving a non-continuous neuron evolution and 

larger oscillations. The oscillations are provoked by the fact that an abrupt 

change in a neuron output implies an abrupt change in the network behavior. 

Surely due to this fact, a shape parameter of 1 is applied in [5] to suppress the 

oscillations at the neuron outputs caused by an infinite one, which does not 

suffice to make the simplification proposed by Hopfield in [8] pertinent. From 

this simple mathematical analysis, two important conclusions can be drawn. 

First, the system described in [5] is unable to reach the energy minimum, at 

least with the chosen parameters. Second, a finite shape parameter should be 

employed in order to avoid system oscillations, being therefore necessary the 

usage of the HNN dynamics formulation expressed in (1). 

 

III. EXISTING HNN-BASED DRA ALGORITHM 

At the essence of a HNN is an energy function ensuring that global minimum 

occurs in optimum solution [8]. This feature has been extensively used to 

accommodate the specification and solution of complex optimization problems. 

In [5] Ahn is assisted by a HNN to solve the DRA problem to fairly distribute the 

total system bandwidth among users while maximizing the bandwidth utilization. 

To this effect, a 2D HNN (with NxM neurons, N users and M bit rates) is 

presented. Neuron outputs represent the bit rates allocated to each user, being 
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1ijV =  if the j -th bit rate is assigned to the i -th user and 0ijV =  otherwise. The 

energy function proposed is as follows [5]: 
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This energy function is composed by five terms. The first one ensures that a fair 

resource allocation among connections is obtained. The cost function ijC  is 

defined as [5]: 
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where 1iB  is the highest bit rate of user i , ijB  is the j -th bit rate of user i  and 

TB  is the maximum system capacity. The cost function takes values in the 

interval [0,1]. 0ijC =  if ijB  is the fair bit rate, and 1ijC =  when the distance to the 

fair bit rate is maximum. The fair bit rate of the i -th user is: 

 1
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And the fairness of the allocation can be measured as [5]: 

 
1
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fairness 1 1

=

= − −∑ %
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where iB  is the bit rate finally allocated to user i . 

The second term aims at maximizing the allocated bit rate to each user without 

exceeding TB . It is worth noting that through ζη , where 
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( )( )1 1
1

N M

ij T iji j
u B B Vζ

= =
= −∑ ∑  and η  is a constant, a high penalty is imposed if 

the maximum system capacity is exceeded. The third term prevents particular 

bit rates from being allocated to specific users, and the matrix ψ  represents a 

service bit rate permission table. The fourth term is intended for reaching an 

stable solution where { }0,1ijV ∈ . Finally, the fifth term guarantees that only one 

bit rate is allocated to each user among the feasible set. 

It should be noted that equation (3) is not a Lyapunov function (i.e. it has not a 

continuous derivative), and, thus, the results about stability obtained by Hopfield 

cannot be applied. As it can be observed, two variables depend on ijV  in the 

gradient of the second term, namely ζ  and the absolute value. The first one is 

a unit step function whose derivative is always null except at 0 where it is not 

defined. This discontinuity does not imply any problem because the step 

function derivative can be defined as 0 at the discontinuity, as in [5]. However, 

the derivative of the absolute value is also not defined at 0, but in this case the 

lateral limits differ and have opposite signs. This way, each time TB  is 

exceeded the outputs of all neurons are reduced being subsequently increased 

in the next iteration, when the total bit rate is below TB . Consequently, the 

system in [5] will oscillate, in spite of defining the value of the derivative at the 

discontinuity. This oscillation has severe consequences for the HNN-DRA 

performance since it prevents the network from reaching a stable solution. The 

formulation in [5] forces the system to change abruptly its evolution (i.e., its 

gradient), when ζ  is activated.  
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IV. USER BANDWIDTH USAGE-DRIVEN HNN-DRA ALGORITHM 

(UB-HNN-DRA) 

This section presents an enhanced HNN-DRA formulation, called UB-HNN-

DRA, which proposes a new second term in (3), so that the HNN dynamics 

drawbacks identified in the previous section are effectively addressed. The UB-

HNN-DRA follows the same objective as the HNN-DRA algorithm. However, for 

the reasons detailed below, the second term has been redefined as follows: 
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where ijH  is the system total bit rate if the j-th bit rate is allocated to the i-th 

user and the rest of users are assigned the current bit rate status. Note that the 

first component, weighted by 2aµ , always maximizes the overall allocated 

resources. The second component, weighted by 2bµ , now permits that only the 

users whose bit rate demands make Hij  exceed TB  be penalized for such 

behavior as opposed to [5], where such penalty affected every user.  

The gradient of the new proposed term is: 

 2 2 2
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In (9) it is also necessary to calculate the derivative of ijξ  and consequently the 

derivative of the step function. Therefore, the new energy function is not a 

Lyapunov function either and a similar discontinuity appears as in (3), but with 

the new formulation (7), the penalty is isolated to each individual neuron (i.e., it 

is only applied to the neurons that change their ijξ ). This improvement allows 
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some of the neurons to retain its natural stable evolution and also the overall 

HNN to reach a stable state where beforehand oscillation was mandatory and 

optimum solution could not be reached. However, the achieved fairness is 

higher with the original formulation. Since a resource allocation is fairer when all 

user bit rates approach the proportional distribution, when employing the 

original formulation, according to which all users' neurons are jointly reduced, 

the fairness among them is not broken. On the other hand, with the new 

formulation, reducing the neuron outputs of one single user benefits the overall 

system neurons evolution at the expense of decreasing the fairness of that 

user. 

Although stability is not mathematically ensured, this new second term reduces 

the neurons oscillation and, together with the correct definition of the HNN 

dynamics (1), both changes have profound implications in the dynamics of the 

HNN, the stability of the solutions reached and ultimately in the overall system 

performance. 

 

V. WEIGHTING COEFFICIENTS CALCULATION 

The HNN-DRA weights obtained in [5] do not achieve the best performances in 

terms of throughput maximization and system constraints satisfaction. The 

throughput is maximized and the constraints are fulfilled when the total 

allocated bit rate approaches TB  without exceeding it, and ensuring as much as 

possible the fair distribution of bit rates among users. This section presents a 

new rationale for the weighting coefficients calculation. 

 

 



SUBMITTED TO ELSEVIER NEUROCOMPUTING 
 

A. HNN-DRA. 

The fourth term of the HNN-DRA energy function only aims at enhancing the 

convergence speed of the neural network. This term must not avoid the change 

of a neuron output, from 0 to 1, or vice versa, if the rest of the terms point to it. 

Let ( ),i a  and ( ),i b  be two neurons of the same user. In case neither of their 

correspondent bit rates exceeds the maximum resources, the energy gradient 

of both neurons is: 
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Since the energy function is a second order function, if the bit rate iaB  is better 

than ibB  in terms of fairness and throughput maximization then: 
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The worst case occurs when 1ibV =  and 0iaV = . Then, bearing in mind that a 

neuron output is further increased if its gradient decreases (see (1) or (2)), the 

fourth term will not prevent the change to 0ibV =  and 1iaV =  if: 
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(11) gives an upper bound for 4µ . Note that the right side of (11) can never be 

negative thanks to (10). 
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Now focusing on the fifth term, users should never have more than one bit rate 

allocated. The fifth term is minimum when all the neuron outputs of a user sum 

one. At these points this term and its derivative are zero. If the sum of the 

derivatives of the rest of terms is not zero, neurons start to increase or decrease 

their value running the risk of pushing the outputs away from the desired value. 

Let define δ  as the maximum desired distance from the sum one for the 

outputs, i.e. the equilibrium is reached if 
1

1
M

ill
V δ

=
− <∑ . If 

1
1

M

ill
V δ

=
> +∑  then 

the following must be satisfied to decrease the neurons output: 
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And if 
1

1
M

ill
V δ

=
< −∑  then to increase the neurons output: 
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(11), (12) and (13) are the conditions that must satisfy 1µ , 2µ , 4µ  and 5µ . 

Therefore, the first step in the weighting calculation is to give an arbitrary value 

to one of the four coefficients and afterwards to obtain the rest of weights so 

that they fulfill these three conditions simultaneously. Next, 3µ  and η  can be 

obtained provided these four weights. In the first case, if a specific bit rate is not 

allowed to a user, then it must not be allocated to him, or in terms of the neural 

network, the correspondent neuron output must decrease. For that reason: 
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In the worst case 0ijC =  and 
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system from having more than one bit rate allocated simultaneously to the same 

user. Therefore: 
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Finally, if the maximum system capacity TB  is exceeded, the neuron outputs 

must be decreased. Consequently, maintaining the same rationale as before: 
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B. UB-HNN-DC. 

HNN-DC and UB-HNN-DC weighting coefficients calculation are equivalent, 

hence, expressions (11), (12), (13) and (14) are still valid rewriting 2µ  as 2aµ . 

Focusing on 2bµ  and in order to allocate a bit rate that not exceeds the 

maximum capacity, at least one of the correspondent neurons must be more 

favored (increasing faster or decreasing slower) than the neurons exceeding the 

maximum resources, hence: 
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where ( ),i fav  is the favored neuron and ( ),i exc  is the neuron whose bit rate 

exceeds the maximum capacity. Therefore, the following must be fulfilled: 
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VI. PERFORMANCE EVALUATION 

The performance of the proposed formulation, UB-HNN-DC, has been studied 

in terms of convergence capability, system bandwidth utilization and fairness. 

The system is bandwidth limited and the maximum capacity is set to 850 kbps, 

a common value for WCDMA UMTS deployment [6]. A number of valid bit rates 

{256, 128, 64, 32, 16 kbps} are available to provide a single service within a 

range of agreed service levels. Thus, the QoS levels observed by the users are 

directly related to the bit rates allocated, where higher bit rates imply improved 

quality perception. The HNN target is to maximize the allocated bandwidth 

serving each user with a bit rate as high as possible. The simulations are 

carried out with an increasing number of active users in a single cell. Moreover, 

to abstract time evaluations from the features of any digital computer employed 

and the actual implementation of the HNN routine, the concept of iteration has 

been applied; with an iteration representing a complete computation of the 

neuron states. The maximum number of iterations for each run of the algorithm 

is set to 10.000, and the results are computed and averaged for a total number 

of 10.000 runs for each system load, randomly selecting the HNN initial state for 

each run.  

In order to decouple performance degradation due to wireless phenomena such 

as path loss, noise or interference from performance degradation due to 

spurious HNN dynamics behavior, such issues are not taken into consideration. 
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Three different HNN algorithms are compared: the original HNN-DRA with the 

weights proposed in [5] and in Section V.A., and the UB-HNN-DRA whose 

weights are taken from Section V.B. Table I summarizes the value of these 

weights. The rest of the HNN parameters are extracted from [5] and set to: 

1 iR = Ω , 1 FiC = , 1i N= K  

Fig. 1 depicts a typical evolution of the neuron outputs for a particular user 

when an infinite shape parameter is selected, iα = ∞ . Although this figure has 

been obtained using the formulation and the weights of [5], a similar behavior 

could be observed with the UB-HNN-DRA formulation and even with any energy 

function defined to solve any other optimization problem. The oscillations 

produced by the infinite shape parameter make the neuron evolution to be 

uncontrollable. Therefore, the selection of 1iα =  is preferred. 

With 1iα = , the dynamics of the HNN-DRA with the original weights of [5] and 

the UB-HNN-DRA algorithms are now studied. Fig. 2 shows a typical evolution 

of the neuron outputs for a particular user. As it can be observed, the 

formulation in [5] is unable to decide between 32 and 128 kbps. On the other 

hand, with the proposed formulation, the oscillations disappear and the system 

is able to reach the equilibrium point allocating 64 kbps to the user. In this case 

the oscillations result from the absolute value of the energy function and 

therefore they are different from those observed in Fig. 1. 

It can be argued that this evolution is rather seldom, without any real impact on 

the long-term average system performance. To this effect, the oscillation 

probability, Poscillation -probability that the system get at the maximum number of 

iterations without reaching stability-, has been evaluated. As depicted in Fig. 3, 

HNN-DRA exhibits a significant oscillation probability for both cases, using the 
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weights of [5] and with those obtained in Section V.A. Such probability is zero 

only for two special cases: with two and six users. A system with two users has 

enough resources to assign the maximum bit rate to both users, 256 kbps. In 

the case 6 users are present in the system, such probability is also zero since 

the fair allocation, 850/6=141 kbps, is higher and close to 128 kbps therefore 

the HNN-DRA is stable with all the users allocated with 128 kbps. On the 

contrary, fair allocation for 4 users, 850/4=212, is now lower and close to 256 

kbps and hence the HNN-DRA tries to allocate 256 kbps to all users. Since this 

allocation exceeds TB , all the neurons outputs are reduced and consequently 

the absolute value avoids the HNN-DRA to reach a stable state. This behavior 

explains the high oscillation probability. The case with 8 users is similar but now 

the fair allocation is lower and close to 128 kbps. On the contrary, UB-HNN-

DRA exhibits no oscillation and hence a quick system convergence is achieved. 

Another conclusion that could be drawn from Fig. 3 is that weights of Section 

V.A. imply worse performance than the ones originally proposed in [5], as the 

oscillation probability is considerably higher. Nevertheless, the total allocated bit 

rate shown in Fig. 4 leads to the opposite conclusion. This figure has been 

obtained averaging the total bit rate allocated of all the feasible solutions 

obtained with the algorithms. Unfeasible solutions are those with none or more 

than one neuron active or those that exceed the maximum capacity TB . The 

worst bandwidth utilization is exhibited by formulation in [5], especially for large 

number of active users (more than 15 users in our case). The non satisfactory 

weights selection makes the allocated bit rates tend to the lowest available one 

(i.e., 16 kbps for each user). However, such behavior improves the stability of 

HNN-DRA since the maximum bandwidth is not exceeded, what justifies the 
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best behavior of formulation in [5] regarding oscillation probability. On the other 

hand, the new weights of Section V.A maximize the bandwidth usage what 

entails a higher oscillation probability. Consequently the reduction in the 

oscillation probability of the HNN-DRA formulation is at the expense of a lower 

utilization of the free bandwidth available. Conversely, the UB-HNN-DRA 

maximizes the bandwidth usage and couples that resource allocation 

optimization with a faster convergence due to the oscillation avoidance 

mechanism embedded in the enhanced formulation. Moreover, regarding the 

feasibility of solutions, the 18.77% of the solutions of the original formulation 

and weights are unfeasible and the 12.69% for the new weights, whereas the 

UB-HNN-DRA has no unfeasible solution in any of the runs performed. 

Unfeasibility is the worst consequence of oscillation. If the neural network 

oscillates, DRA solutions extracted from the neuron states are uncontrollable 

and, thus, they can be unfeasible. 

Finally, Fig. 5 compares the fairness (6) of the different formulations. Two 

different approaches have been used to calculate this fairness. The first one, 

called average instant fairness, calculates the fairness among users for each 

run and averages the fairness of the 10.000. The second method, called long-

term fairness, averages the bit rate allocated to each user in all the performed 

runs and next obtains the fairness among them. As Fig. 4, this figure is obtained 

considering only the feasible solutions. Fig. 5.a) shows the average instant 

fairness. The UB-HNN-DRA formulation is more unfair as explained in section 

IV, and the HNN-DRA has similar fairness independently of the employed 

weights. Nevertheless, the long-term fairness shown in Fig. 5.b) changes 

considerably. Now, the original formulation of [5] is the more unfair whereas the 
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enhanced version with modified weights and the new formulation improves 

noticeably the fairness approaching the maximum, 1. This behavior can be 

easily explained with an example. Let focus on 6 users, in this case the original 

formulation allocates always 128 kbps to all users. Since the fair bit rate is 

141.67 kbps, the fairness results in 0.90. On the other hand, the UB-HNN-DRA 

typically allocates 256 kbps to one user, 128 kbps to 4 users and 64 kbps to the 

remaining user. This allocation uses more bandwidth but is more unfair, with a 

fairness of 0.71. Nevertheless, the users with 256 and 64 kbps are selected 

randomly and, therefore, these users switch in different runs. In the long-term, 

i.e. when considering several resource allocation processes, users tend to be 

served with 138.67 kbps which is nearer to the fair bit rate. Note that Fig. 5.b) is 

Fig. 4 normalized by the maximum capacity. This fact can be easily concluded 

from (6) taking into account that the average total allocated bandwidth is equally 

divided between users in the long-term. 

 

VII. CONCLUSIONS 

This paper has underlined main drawbacks identified in an existing user-centric 

HNN-DRA formulation for packet-switched communication systems and has 

presented an enhanced formulation. The correct differential equation for 

evolution to the energy function minima has been derived and an efficient 

energy formulation, together with optimum weighting coefficients, presented. 

The paper has demonstrated that the proposed UB-HNN-DRA algorithm 

maintains the best bandwidth maximization and long-term fairness that can be 

reached with the original HNN-DRA and improves the behavior of the neural 

network reducing the oscillation probability to negligible values. These are 
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critical aspects for the effective real-time provision of multimedia services over 

future wireless systems to a large number of users with varying QoS 

requirements. 
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Figure 1. Simulation example of the neurons evolution with an infinite shape 

parameter. 
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Figure 2. Simulation example of the two energy functions studied in this paper. 
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Figure 3. HNN oscillation probability as a function of the system load. 
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Figure 4. Average total allocated bandwidth as a function of the system load. 
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Figure 5. Fairness. a) Average instant fairness. b) Long-term fairness. 
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