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Abstract– This paper proposes a Joint Dynamic Resource Allocation (JDRA) algorithm that allocates 

simultaneously the best-suited Radio Access Technologies (RAT) and amount of resources to all the users active in a 

multi-access wireless system. Both distributions are performed at the same time so as to make the most of the 

heterogeneous network. In this scenario users can connect to several RATs but not simultaneously and, therefore, 

the JDRA algorithm is able to consider the required handover time in the decision making. Moreover, the algorithm 

guarantees the Quality of Service (QoS) provision in terms of delay and bit rate in a multi-service scenario where 

different users may have different QoS requirements. Such a complex optimization problem has been tackled using 

a Hopfield Neural Network (HNN) formulation. These neural networks have fast response times once hardware 

implemented, which is very significant since current and future wireless networks must rapidly adapt to changing 

circumstances in wireless environment and traffic. Results prove the benefits achieved by the usage of the HNN-

based JDRA algorithm. Firstly, the joint decision outperforms a two-steps procedure in which, after the RAT 

selection, the same uni-RAT DRA algorithm is applied. Secondly, the proposed algorithm can deal with different 

levels of congestion and load distribution among RATs in a much better way that other reference algorithms 

specifically designed for multi-service scenarios. 

 I. Introduction 
Mobile wireless systems are in constant evolution due to the continuously evolving requirements and 
expectations of both users and operators. Users expect high quality communications and full access to 
digital contents with the same transmission capacity as wired networks, independently of the number 
of users active in the system. According to this user demand for wireless connectivity, new standards 



have been designed and launched to the market in the last years to satisfy these increasing 
requirements. General Packet Radio Service (GPRS), Universal Mobile Telecommunications System 
(UMTS), Worldwide Interoperability for Microwave Access (WiMAX), Wireless Local Area Network 
(WLAN) or Bluetooth are some examples of current standardized technologies. Each Radio Access 
Technology (RAT) is specially suited for one type of wireless network, ranging from Wireless Wide 
Area Networks (WWAN) down to Wireless Personal Area Network (WPAN). In addition to the usage 
scenario, conventional mobile networks were devised to fulfill the specific Quality of Service (QoS) 
requirements of each service, whereas other technologies paid more attention to system simplicity 
and flexibility. 
Currently it is quite common to have several independent RATs giving coverage to the same area. 
Moreover, users are who decide upon the technology they get connected to, either configuring the 
User Equipment (UE) or using different UEs for each technology. Nevertheless, users should not get 
involved in this type of decisions, or at least not separately, since they have not got a global view of the 
different RATs. Thus, the future points to a multi-RAT UE capable of getting automatically connected to 
the most proper RAT. This multi-access wireless system, also referred to as heterogeneous wireless 
system, could make the most of the individual coverage and instantaneous capacity of each technology 
taking into account the RAT availability, signal quality and type of service to provide the most 
appropriate resources for the variety of different users. 
The notion of being always best connected, which was first introduced in [1], is an extension for 
heterogeneous systems of the notion of being always connected. Now, users not only should be able to 
be connected anywhere and anytime, but also they should be served with the best available 
connection, which can be only accomplished with the interworking of the different technologies. For 
that reason, the standardization bodies are doing their best to make the interworking possible. For 
instance, the 3GPP organization not only allows UMTS to interwork with GPRS (two 3GPP RATs) but 
also establishes the basis for a WLAN interworking (a non-3GPP RAT). In addition, the IEEE Standards 
Association is working on the 802.11u standard (scheduled for 2009), which provides WLAN with the 
capability of interworking with other external networks. Nowadays RAT interworking is becoming a 



reality that requires more advanced mechanisms resulting in a higher resource usage and network 
quality. 
 
A. RRM in Multi-access Wireless Systems 
In wireless systems the concept of QoS poses several constraints to networks’ management to assure 
an optimum distribution of the scarce radio resources among active users. In this framework, the 
concept of Radio Resource Management (RRM) encompasses various techniques specially designed to 
fulfill the negotiated QoS to the end users.  
As distinguished from existing wireless networks where an independent RRM is performed by the 
radio network controller of each system, in a multi-access wireless network some kind of overall 
resource management is required to select the best RAT, dynamically allocate resources among them, 
control the congestion and manage handovers. The Common Radio Resource Management (CRRM) 
concept is widely used to refer to these tasks.  
The most important functions related to radio resource management are: initial RAT and cell selection, 
Call or Connection Admission Control (CAC), congestion control, power control, scheduling or 
resource allocation, handover (HO) and vertical HO. Depending on the level of CRRM/RRM coupling 
these functions are handled by either a RAT-specific RRM entity or by the overall CRRM entity [2]. 
Anyway, it is generally agreed that the CRRM entity is, at least, responsible for the interworking of the 
Radio Access Networks (RANs) not only of the same RAT but also of different RATs [3].  
Considering a high or tight coupling degree – the one grabbing nowadays more attention from the 
research community – the CRRM entity is entrusted with the management of most of the RRM 
functionalities, delegating only the power control and scheduling to the RRM entities. In terms of 
resource allocation, at each resource allocation slot the RRM entities have a number of users 
connected and must distribute the resources among them. The CRRM entity is responsible for the 
distribution of users among RATs and, consequently, for vertical HO management. The RRM entity can 
use any of the algorithms proposed in the literature to distribute resources in a unique RAT (see 
examples [2],[4]-[7]), whereas the CRRM entity chooses one RAT selection technique to reduce system 



congestion while maximizing user QoS (see examples [8], [9]). Since this paper deals simultaneously 
with both aspects, some of these techniques are further analyzed. 
Certain resource allocation techniques allocate resources to those users experiencing best channel 
quality [2], [4]. This kind of policy can maximize the average system throughput, but at the expense of 
an unfair distribution that implies relatively bad QoS for users with poor channel quality. A wide range 
of more sophisticated algorithms are based on the Generalized Processor Sharing (GPS) idea [5], 
where resources are distributed among users proportionally to some predefined weights. Within this 
group, Modified Largest Weighted Delay First (MLWDF) [6] and its improvement, the Cross-Layer 
Scheduling Algorithm (CLSA) [7], are noteworthy. Both techniques take into account some weighting 
coefficients that prioritize users according to their service, current QoS and perceived channel quality. 
For that reason, these algorithms exhibit better performance than those prioritizing users according to 
only one of these characteristics. Moreover, MLWDF and CLSA were designed to provide either bit rate 
or delay-based QoS. 
Regarding RAT selection, Pérez-Romero et al. proposed different policies [8] to sort, in order of 
preference, the list of candidate RATs the user could get connected to. As an example, they proposed 
selecting GPRS for voice and indoor users and UMTS for web and outdoor users whenever possible. 
This policy is motivated by the good performance of UMTS for high data rate users as compared with 
GPRS and by the bad behavior of UMTS for indoor users. Nevertheless, this policy does not consider 
quality expectations of users. With this aim, Pérez-Romero et al. defined a fittingness factor that 
reflects the degree of adequacy of each RAT to each user [9]. The fittingness factor takes into account 
two concepts: (a) the capabilities of the RAT and the UE, i.e. if a RAT can provide the service the user is 
asking for and if the UE can connect to the RAT, and (b) also the suitability of each possible connection 
in terms of channel quality and bit rate. Although both algorithms only consider one RAN per RAT, [9] 
can also choose the best-suited RAN inside the selected RAT. Conversely, [8] needs an additional 
process for RAN selection once the destination RAT is known. 
So far, Unlicensed Mobile Access (UMA) is the only mechanism being implemented to dynamically 
select the best-suited RAT. UMA is the commercial solution of the 3GPP standard called Generic Access 



Network (GAN) [10], [11]. In the UMA solution, dual UEs can migrate from High-Speed Downlink 
Packet Access (HSDPA) network to a WLAN Access Point (AP) and vice versa. Thus, anytime a UE finds 
an AP, it tries to get a WLAN connection since this technology is supposed to provide much better 
throughput capacity than HSDPA. This philosophy is in some way similar to the policies proposed in 
[8]. 
 
B. Scope of this work 
In addition to the abovementioned CRRM/RRM interaction degree, in the very high interaction degree 
the CRRM entity decides also on the resource allocation. This fact makes possible to jointly distribute 
both resources among users and users among RATs to make the most of the available technologies. Of 
course, in this paradigm users can be connected to more than one type of RAT but not simultaneously. 
In this context, there is not any joint scheduling solution proposed in the literature, beyond our 
preliminary works of [12] and [13]. The complexity of this optimization problem makes it difficult not 
only to find a solution but also to define an algorithm capable of performing the search. For that 
reason, most research groups are just focusing on RAT selection techniques. Nevertheless, this article 
proves that a joint scheduler can outperform the combination of an optimum RAT selection technique 
and uni-RAT scheduler. 
To this aim, this article proposes an extremely efficient Joint Dynamic Resource Allocation (Joint DRA, 
JDRA) algorithm. The complexity of the optimization problem requires the usage of advanced 
techniques to find, at least, a sub-optimum solution. Many types of algorithms have been proposed in 
the literature to solve such huge optimization problems, like genetic algorithms, game theory, linear 
programming or Hopfield Neural Networks (HNNs). Within this group, HNNs have been identified as 
fast hardware optimizers that can obtain a valid solution in few microseconds [14]. This fast response 
is a consequence of the simplicity of each individual neuron and their parallel interworking. Therefore, 
problems that are more complex need more neurons, i.e. more hardware, but maintain the fast 
response of simpler problems. This feature makes HNNs be the best candidates for sub-optimal and 
real-time schedulers. 



HNNs have been widely used in a variety of scientific domains [15]-[17]. The first study that 
introduced an HNN-based algorithm in a wireless system was presented by Del Re et al. in [18]. The 
research work carried out by Lázaro and Girma in [19] was built on this algorithm. They proposed the 
usage of HNNs for the dynamic distribution of frequency channels over the cells of a GSM system 
together with a guard channel technique for handovers. Ahn and Ramakrishna [14] were the first 
authors to use HNNs for solving the DRA problem. In the main, their algorithm aimed at maximizing 
the allocated resources and obtaining a fair distribution among users. This seminal work was extended 
in our previous work of [20], where not only resources were maximized, but also delay was minimized 
in order to improve the QoS support. Nevertheless, this work is only focused on delay and it only 
distributes resources in a unique RAN. 
To sum up, the previous works have shown the utility of HNNs to allocate dynamically resources to 
users. Thus, starting from the original work of Ahn and Ramakrishna [14], this paper aims at 
proposing a new HNN-based algorithm to jointly distribute the set of resources of RATs among users 
and users among the RATs available in a heterogeneous wireless system. This algorithm will take 
simultaneously into account the kind of service and specific QoS requirements of each user and the 
resource availability and characteristics of each RAT. These are the main contributions of this paper 
and the main differences with respect to [14] and [20]. 
The remaining of this paper is organized as follows: Section II reviews the fundamentals of HNNs. In 
Section III the HNN energy formulation proposed for the JDRA problem is presented. The simulation 
scenario is described in Section IV whereas Section V copes with the analysis of the simulation results. 
Finally, the main conclusions are drawn in Section VI. 
 II. Fundamentals of Hopfield Neural Networks 
HNNs are a type of recurrent neural networks completely characterized by an energy function N that 
describes their dynamics – i.e. the time evolution of the neuron inputs and outputs. The main 
contributions of Hopfield are summarized in [15] and [21]. Hopfield considered a network with 
interconnected neurons using resistors. He defined OPQ = 1/SPQ as the interconnection weight and SPQ  



the resistance between the T-th neuron input and the U-th neuron output. In addition, each neuron has 
also an input current VP. Let us define WP  as the input voltages, XP  as the output voltages and YP  as the 
gain function of neuron T, i.e. XP = YP(WP). Neuron outputs take on any value between 0 and 1. YP  is 
usually defined as the sigmoidal, step or linear functions. The sigmoidal function is similar to the 
response of operational amplifiers that form the neurons in the original Hopfield model. The step 
function is a first approximation of the sigmoid but HNN with such gain function have very bad 
outcomes [22]. A better approximation is the linear function, which has been used in this work. 
Moreover, the proportionality constant has been reduced to the unit for simplicity reasons. Thus: 

 XP = YP(WP) = WP . (1)  
Note that WP  belongs to the interval [0,1] too. The time evolution of the T-th neuron is [21]: 

 ZP [WP[\ + WPSP = ^ OPQXP + VP
_

Q`a , (2)  
where SP and ZP  are, respectively, the equivalent resistance and capacitance of the T-th neuron input 
and b is the number of neurons in the network. Incorporating SP  and ZP  into OPQ and VP  and using (1), 
(2) can be rewritten as: 

 [WP[\ = ^ OPQXP + VP
_

Q`a . (3)  
Let consider the following energy function: 

 N = − 12 ^ ^ OPQXPXQ
_

Q`a
_

P`a − ^ VPXP
_

P`a . (4)  
Hence, if OPQ = OQP: 

 [WP[\ = [XP[\ = − dNdXP . (5)  
(5) can be approximated with computer simulations using the Euler forward method. Consequently, 
defining a time step ∆\, neuron outputs are updated each ∆\ seconds following this procedure: 

 XP(\ + ∆\) = XP(\) − ∆\ dNdXP (\). (6)  



A noteworthy conclusion that can be extracted from (5) or (6) is that neurons evolve towards states 
with less energy. Moreover, the equilibrium point, i.e. when XP(\ + ∆\) = XP(\) ∀T, is reached at a local 
minimum of N. As a consequence, N must be defined to be minimum at the desired solutions and then 
the HNN will find and stop at those solutions. 
 III. JDRA Problem Formulation 
The most relevant contribution of this paper is the formulation of the HNN energy function that 
satisfies all the constraint established by the JDRA problem in a multi-access and multi-service 
wireless system. This section gives a full account of all the terms included in this energy function and 
the procedure followed to come up with such formulation. 
Let V be the number of users demanding resources at a specific resource allocation time. All users will 
be distributed among g RANs that may belong to different radio technologies or not. The resources of 
all RANs are divided into minimum resource quanta, e.g. time slots in GPRS or 256 Spreading Factors 
(SFs) in UMTS. Due to this division, for the h-th RAN only one finite set exists, ℜj , with all the feasible 
resource quantities that may be allocated to one user. For example, in GPRS only 0 up to 8 time slots 
can be allocated to one user, hence the finite set is ℜj = {0,1,2,3,4,5,6,7,8}. Let kj  be the number of 
elements of ℜj . The optimization problem consists in finding the best combination of RAN and 
quantity of resources that must be allocated to each user in order to satisfy its QoS requirements and 
system constraints. 
 
A. QoS Provision 
Depending on the type of service, quality requirements can be concreted differently, for instance in 
terms of maximum packet delay or minimum bit rate. In order to have a common definition for QoS 
requirements, the concept of minimum target bit rate firstly introduced in [20] is extended in this 
paper. This minimum bit rate has to fulfill the user-specific QoS requirements. Therefore, it must be 
calculated independently for each user and type of QoS. 
 



QoS based on minimum bit rate: if the T-th user requires a minimum instantaneous bit rate of SP, then 
the minimum target bit rate for that user is: 

 Slmn,P = SP. (7)  
Nevertheless, this tight condition is usually relaxed for actual services. For example, data transfer 
services using File Transfer Protocol (FTP) require not an instantaneous minimum bit rate SP  but an 
average one, SoP . In this case Slmn,P can be calculated using a leaky-bucket approach. SoP ∙ ∆\q tokens are 
generated each resource allocation time, being ∆\q the resource allocation period. On the other hand, 
SP(\q) ∙ ∆\q tokens are spent each period, where SP(\q) is the bit rate allocated to the T-th user at time 
\q. Note that time is now represented with \q  to avoid confusion with time evolution of HNN. Each 
available token can be understood as a bit that must be transmitted to reach the average minimum bit 
rate SoP. The quantity of bits the system owes the T-th user is calculated as follows: 

 rstuv,P(\q + ∆\q) = w0, rP(\q) = 0,rstuv,P(\q) + xSoP − SP(\q)y∆\q, otherwise, z (8)  
where rP(\q) is the quantity of bits stored in the buffer of the T-th user at time \q . The definition of (8) 
assumes that rstuv,P  is reset at the beginning of every data burst. Thus, SoP is actually the minimum 
average bit rate per burst. The objective is that the quantity of owed bits be at most 0 at the burst end. 
If so, the average bit rate allocated to the user would be greater or equal to SoP. Slmn,P is the minimum 
bit rate that accomplishes this objective. Thus, if at time \q the user is served with Slmn,P until the burst 
end, then the burst would last rP(\q)/Slmn,P additional seconds and: 

 rstuv,P {\q + rP(\q)Slmn,P | = 0 = rstuv,P(\q) + xSoP − Slmn,Py rP(\q)Slmn,P . (9)  
Finally, from (9): 

 Slmn,P = rP(\q)SoPrP(\q) − rstuv,P(\q). (10)  
It is worth noting that (10) makes sense only if rP(\q) > rstuv,P(\q). If the quantity of owed bits is 
greater than those available for transmission then it would not be possible to achieve the objective bit 
rate SoP. In that case, the allocated bit rate should be the greatest one in order to approach SoP as 
possible. Consequently, Slmn,P can be defined as Slmn,P = ∞ for rP(\q) ≤ rstuv,P(\q). 



QoS based on maximum delay: if the service of the T-th user is delay-sensitive and packets must be 
transmitted before a certain maximum delay �max,P, then Slmn,P can be obtained following [20]: 

 Smin,P = � max�`a…��
∑ ��,P��`a�max,P − ��,P , �max,P > max� ��,P ,∞, �max,P ≤ max� ��,P ,z (11)  

being �P  the number of packets in the buffer, ��,P the size in bits of the �-th packet and ��,P  the delay of 
the �-th packet of user T. Refer to [20] for more details about eq. (11). 
 
B. Resources to bit rate mapping 
Each RAN may have a different amount of resources available for distribution. Besides, the type of 
resource can be highly different from one RAT to another. Therefore, it is quite important to calculate 
the quantity of resources that each user requires by converting S�P�,P to amount of resources or vice 
versa. Let us define �j(�P) as the effective bit rate that the T-th user is capable of achieving with a 
resource unit (r.u.) of the h-th RAN. �P is the channel Signal to Noise and Interference Ratio (SNIR), 
which measures the received signal quality. �j can be understood as a kind of Look Up Table (LUT). 
Supposing an optimal link adaptation, �j can be obtained as:  

 �j(�P) = max�`a…��
���� + Z� ���jx1 − N��j(�P)y, (12)  

where �j is the number of Transmission Modes (TMs), i.e. modulation and coding scheme pairs, ���j  
and N��j are respectively the bit rate per r.u. and error rate of the �-th TM of the h-th RAT, �� is the 
payload length and Z� is the header length. 
Once the required S�P�,P  and the current SNIR perceived by the user are known, the amount of r.u. to 
be reserved to the user can be easily obtained dividing S�P�,P by �j(�P). 
 
C. HNN for JDRA 
Previous works – see [14] and [20] – used 2-dimensional (2D) HNNs for solving the DRA problem. This 
work uses the natural evolution of these networks – first proposed in [12] –introducing the different 
RANs in a third dimension. Therefore, neurons are organized in a 3D grid where if the neuron at 



position (T, U, h) is active this represents the allocation of the U-th resource quantity in the h-th RAN, 
the U-th element of ℜj , to the user T. At the equilibrium the rest of neurons of user T must be inactive. 

 Figure 1. Figure 1. Figure 1. Figure 1. Hopfield Neural Network and equilibrium example. 4 users ask for 
resources in 3 RANs. The first two RANs have 5 different resource quantities 
whereas the last RAN has only 4. 

 
Figure 1 shows an example with 4 active users demanding resources in 3 different RANs.  
 
D. Energy function 
Let us define the following objective function that the HNN will minimize: 

 Na = − �a2 ^ ^ ^ �PQjXPQj
��

Q`a
�

j`a
�

P`a − ��2 ^ ^ ^ �j(�P)�Qjmax��� (��(��)���) XPQj
��

Q`a
�

j`a
�

P`a , (13)  
where �PQj  is the benefit – see Section III.E for more details – the T-th user receives in terms of QoS 
from the allocation of the U-th resource quantity of the h-th RAN, �Qj is the U-th resource quantity of the 
h-th RAN and �a and �� weight each term. As explained before, �j(�P)�Qj is the effective bit rate 
transmitted to user T for a given �Qj, whereas max���(��(��)���) is constant in a resource allocation 
period regardless the value of T, U and h and aims at normalizing the cost of the second term. 
Minimizing (13) will determine the resources allocated to each user pursuing two objectives, first 
maximizing the benefit from users’ perspective and second maximizing the total throughput of the 
heterogeneous system. Note that this maximization is possible due to the negative sign of both terms. 



Nevertheless, additional constraints have to be taken into account. First and most importantly, RAN 
resources are finite and, hence, the total amount of allocated resources must be controlled. To this aim 
a new term was added to (13): 

 N� = Na + ��2 ^ ^ ^ �PQjXPQj
��

Q`a
�

j`a
�

P`a , 
 

(14)  
where �PQj = 0 if the h-th RAN has enough resources to allocate the U-th resource quantity to the T-th 
user and �PQj = 1 otherwise – see Section III.F for further details. – In other words, this term penalizes 
the allocations that imply exceeding the maximum available resources in any RAN. 
Additionally, some resource quantities may not be allowed to some users. Let us define �PQj as a 
permission table where �PQj = 1 if the U-th resource quantity of the h-th RAN should be prohibited to 
the T-th user and �PQj = 0 otherwise. 
Then, the following objective function takes this effect into account: 

 N� = N� + � 2 ^ ^ ^ �PQjXPQj
��

Q`a
�

j`a
�

P`a . (15)  
Thanks to this term, the heterogeneous system can define different user priority sets – Gold, Silver and 
Bronze users – limiting the maximum allowed bit rate according to the user quota. Moreover, when a 
user starts a vertical handover procedure the connection must migrate from the original RAN to the 
new serving one. This process takes some non-negligible time. During RAN changes users cannot 
consume any resource for data transmission. Therefore, the permission table can be modified in 
accordance with this wasted time so that the user in a vertical handover is not capable of using some 
of the highest resource quantities. The amount of resource quantities prohibited will depend on the 
RAN reconfiguration time. 
Finally, some additional terms must be introduced to ensure a rapid convergence to correct and stable 
neuron states. Neuron outputs XPQj  must be 0 or 1 at the equilibrium and furthermore, only one 
neuron must be active, i.e. XPQj = 1, for each user. These two constraints can be introduced in the 
energy function with the two terms proposed in [14] resulting finally: 



 
N = − �a2 ^ ^ ^ �PQjXPQj

��
Q`a

�
j`a

�
P`a − ��2 ^ ^ ^ �j(�P)�Qjmax��� (��(��)���) XPQj

��
Q`a

�
j`a

�
P`a  

+ ��2 ^ ^ ^ �PQjXPQj
��

Q`a
�

j`a
�

P`a + � 2 ^ ^ ^ �PQjXPQj
��

Q`a
�

j`a
�

P`a  
+ �¡2 ^ ^ ^ XPQjx1 − XPQjy��

Q`a
�

j`a
�

P`a + �¢2 ^ £1 − ^ ^ XPQj
��

Q`a
�

j`a ¤��
P`a . 

(16)  

This energy function has been used in this article to solve the JDRA problem. The weighting 
coefficients �a to �¢ must be carefully selected. The same rationale stated in [20] has been followed 
giving as a result the coefficient values summarized in Table I. 
 

Table I. Table I. Table I. Table I. HNN weighting coefficients.    
�a �� �� �  �¡ �¢ 1500 500 2500 16000 15 7000  

E. Benefit function 
Once QoS is homogenized in terms of minimum bit rate S�P�,P, benefit that users perceive depends on 
two main factors. First, the higher the bit rate the higher the benefit. Moreover, the lower the quality 
the user is perceiving, i.e. higher requirements of S�P�,P, the higher the achievable benefit. This policy 
will increase the fairness among users. Because of the second factor, two users with different qualities 
have different maximum benefits. To achieve that, users are weighted inversely to their quality.  
As compared with the benefit function proposed in [20], this article proposes some modifications so as 
to include the second factor by adding some weights to the users. Let us define ZPQj as the benefit 
defined in [20], then: 

 ZPQj = �x�j(�P)�Qj , �P, �Py − �(0, �P, �P)�(Sl¥¦, �P, �P) − �(0, �P , �P) , (17)  
 �(§, �, �) = 11 + ¨©�(ª«¬), (18)  



 �P =
­®̄
®° 2 ln(9)Smin,P , Smin,P ≤ Smax,P,2 ln(9) Smin,PxSmax,Py� , Smin,P > Smax,P,z (19)  

 �P =
­®̄
®° − Smin,P2 , Smin,P ≤ Smax,P,

−Smax,P + xSmax,Py�2Smin,P , Smin,P > Smax,P,z (20)  
 Sl¥¦ = maxPQj x�j(�P)�Qjy , Smax,P = maxQj x�j(�P)�Qjy. (21)  

The main properties of the previous definition are that ZPQj is bounded by 0 and 1 and is increasing 
with a high increment near Smin,P [20]. Thanks to the bounds ZPQj does not increase uncontrollably and 
because of the increment the HNN will tend to allocate resource quantities that satisfy the target Smin,P. 
Finally, the benefit used in this article is defined as: 

 �PQj = minxSmax, Smin,Pymin ±Smax, maxP Smin,P² ZPQj . (22)  
�PQj preserves the two properties of ZPQj and additionally introduces weights for each user favoring 
those users with higher needs. 
 
F. Resource saturation control 
The saturation control mechanism used in this article is similar to that proposed in [20]. �PQj  is used as 
an indicator of which resource allocations may be supported by the RANs. The �PQj indicator is 
calculated for each user T assuming that the rest of users, ³ ≠ T, maintain the resource allocation of the 
current neuron outputs. Thus: 

 �PQj =
­®®̄
®®°1, �Qj + ^ ^ ��jX��j

��
�`a

�
�`a�µP

> �max,j ,
0, �Qj + ^ ^ ��jX��j

��
�`a

�
�`a�µP

≤ �max,j ,
z (23)  

where �max,j is the maximum quantity of resources available in the h-th RAN. If �PQj = 1 then �Qj  
cannot be supported for the T-th user with the current resource distribution. In that case, �PQj increases 



the energy function and, consequently, the HNN tends to decrease XPQj , what finally means not 
allocating �Qj to the T-th user. 
 IV. Simulation Environment 
A. Technologies used in the simulations 
The proposed JDRA algorithm was tested in an artificial environment by means of computer 
simulations. The simulated heterogeneous network comprised two RATs: HSDPA and 802.11e WLAN. 
802.11e WLANs use convolutional codes to protect data from errors. Furthermore, the Packet Error 
Rate (PER) depends not only on the channel quality but also on the payload length. Assuming a Viterbi 
decoding at the receiver, the PER of the �-th TM is [24]: 

 PER�(��, �P) = 1 − x1 − ��¶(�P)y·¸ , (24)  
where ��¶ is the bit error probability of the �-th TM. The optimum payload length that maximizes the 
throughput for each TM is [24]: 

 ��∗ (�P) = − Z�2 + 12 ºZ�� − 4Z�lnx1 − ��¶(�P)y. (25)  
Finally, from (12) and (25), function �j is for WLAN: 

 �j(�P) = max�`a…��
��∗ (�P)��∗ (�P) + Z� ���jx1 − ��¶(�P)y·∗̧ (»�) . (26)  

The available resources in WLAN are slots of channel occupancy which are collision free thanks to the 
use of the HCF (Hybrid Coordinator Function) Controlled Channel Access (HCCA) mechanism. 
HSDPA uses turbo codes instead of convolutional codes to protect data from errors. The Block Error 
Rate (BLER) depends also on the block size and on the channel quality. Nevertheless, each TM has a 
fixed block size and, hence, the BLER for a specific TM is only a function of the channel quality. HSDPA 
has a wide range of possible TMs, from which 30 have been defined in the standard as Channel Quality 
Indicators (CQIs). Only these 30 TMs are used in this work. The BLER of the �-th CQI can be 
approximated as [25]: 



 N��(�P) = ¼10�(»�©a.½��«a¾.�)√�©ÀsÁ(»�) + 1Â© a½.¾. (27)  
Users are supposed to be time multiplexed. Thus, the 15 available codes are always allocated to a 
unique user each 2 ms. This assumption implies that the actual BLER differs from the one obtained in 
[25], since BLER is a function of the SNIR per code. If more codes are allocated then more SNIR is 
needed to maintain the same SNIR per code. Therefore, if 15 codes are allocated (27) has to be 
modified to: 

 N��(�P) = Ã10�±»�©a½ ÀsÁ±a¡_¸²©a.½��«a¾.�²√�©ÀsÁ(»�) + 1Ä
© a½.¾, (28)  

where b� is the number of codes of the �-th CQI, shown in Table II. Moreover, if all the codes are 
allocated to a unique user, bit rates of the considered TMs also differ from the standard. Note that the 
new bit rates are: 

 ��� = ���∗ 15b� , (29)  
where ���∗ is the �-th CQI bit rate, shown also in Table II. Finally function �j is for HSDPA: 

 �j(�P) = max�`a…�½ ���x1 − N��(�P)y. (30)  
The DRA algorithm can allocate all codes to any user every 2 ms. Being one resource element one 
period of 2ms, the quantity of available resources is 500 periods of 2 ms each second. 
 

Table II. Table II. Table II. Table II. Number of codes and bit rate of each CQI.    
CQI b� ���∗ (kb/s) CQI b� ���∗ (kb/s) CQI b� ���∗ (kb/s) 1 1 68.5 11 3 741.5 21 5 3277.0 2 1 86.5 12 3 871.0 22 5 3584.0 3 1 116.5 13 4 1139.5 23 6 4859.5 4 1 158.5 14 4 1291.5 24 7 5709.0 5 1 188.5 15 5 1659.5 25 10 7205.5 6 1 230.5 16 5 1782.5 26 13 8774.0 7 2 325.0 17 5 2094.5 27 15 10877.0 8 2 396.0 18 5 2332.0 28 15 11685.0 9 2 465.5 19 5 2643.5 29 15 12111.0 10 3 631.0 20 5 2943.5 30 15 12779.0  



B. Reference algorithms 
The HNN-based algorithm proposed in this paper was compared with different combinations of RAT 
selection policies and uni-RAT DRA algorithms. The UMA solution and Maximum Bit Rate (MBR) policy 
were used for RAT selection. As explained in the introduction, UMA terminals select WLAN when they 
are in the coverage area of an AP. With the MBR policy, the user connects to the RAN that could 
transmit with the highest bit rate given the current channel quality of the user. Once users are 
distributed among the available RANs using UMA or MBR policy, a DRA algorithm was applied to 
perform scheduling and allocate resources inside each RAN. As DRA algorithms, MLWDF, CLSA and the 
proposed HNN for only one technology were selected. This choice was motivated because MLWDF and 
CLSA take simultaneously into account channel quality, QoS satisfaction and type of service of the user. 
Besides, it was important to make a fair comparison including other algorithms that were also able to 
cope with a composite of bit rate and delay-based services.  
Finally, combining all the possibilities, six different reference algorithms were defined: UMA-MLWDF, 
UMA-CLSA, UMA-HNN, MBR-MLWDF, MBR-CLSA and MBR-HNN. 
 
C. Scenario 
The simulation scenario comprised 7 cells with the cell under study in the center. Each cell had 2 
RANs, one HSDPA and another WLAN, being both, the HSDPA base station and the WLAN access point, 
at the cell center. Users were time multiplexed in both technologies. The studied services were web 
browsing and FTP data downloading, whose traffic models were extracted from [23]. Two different 
user classes were defined for each service. The QoS requirements for web users were a maximum 
delay of 30 s and 60 s, whereas FTP users expect a minimum average bit rate per burst of 150 kb/s or 
50 kb/s depending on the service class. Smin,P was obtained from (10) and (11) for FTP and web users 
respectively. Moreover, MLWDF and CLSA algorithms can use different weights for each service. For 
these simulations, these were extracted from [7], i.e. 1 for web and 0.8 for FTP. Regarding mobility 
modeling, two different areas were considered. Some users could move all around the cell with a 
random speed uniformly distributed between [0,50] km/h. The remaining users just moved within a 



hot spot located at the cell center with a random speed uniformly distributed between [0,3] km/h. The 
cell and hot spot radii were 500 m and 50 m respectively. 
The maximum transmitted power was set to 43 dBm for the HSDPA base station and 20 dBm for the 
WLAN AP. Interfering cells were supposed to transmit half the maximum power being, therefore, half 
loaded. Noise power at the receiver was set to -102 dBm and -95 dBm for HSDPA and WLAN 
respectively, as a consequence of the different bandwidth. The path losses expressed in decibels for 
the T-th user in both technologies were: 

 �HSPDA,P = 137.4 + 35.2 logx[HSDPA,Py, (31)  
 �WLAN,P = 135 + 45 logx[WLAN,Py, (32)  

where [HSDPA,P and [WLAN,P are the distances in km from the T-th user to the base station and the AP. 
The proposed HNN-based algorithm was run every simulation second. Therefore, RAN changes may 
only occur every second at most. Besides, users were supposed to spend 0.5 s completing a vertical 
handover procedure. For the reference algorithms the RAT selection procedures were run also every 
second, whereas DRA algorithms were run every 0.1 s for computational simplicity reasons. In order 
to have access to the same set of solutions, the sets of resource quantities were reduced to 
ℜj ≡ {0,0.1Æj, 0.2Æj , … ,1Æj} for both RATs, where Æj is the quantity of available resources in one 
second.  
 V. Simulation Results 
The results assessment has been divided into two parts. The first part is focused on the improvement 
achieved by a joint scheduling. Consequently, it compares the proposed HNN-based algorithm with the 
UMA-HNN and MBR-HNN algorithms. Next, the HNN algorithm is evaluated against the rest of 
reference algorithms previously defined. 



 Figure 2. Figure 2. Figure 2. Figure 2. Probability of non-satisfaction with an increasing number of users. 

 Figure 3. Figure 3. Figure 3. Figure 3. Probability of non-satisfaction for different load ratios in the hot spot. 
 
A. Joint scheduling improvement 
For this first study, the number of users per service and class ranged from 20, for the least loaded case, 
up to 80 for the most loaded case. Moreover, half the users were located in the hot spot whereas the 
other half moved around the entire cell. Figure 2 shows the mean probability of non-satisfaction or 
outage probability, i.e. the probability of not fulfilling the expected QoS, for the three algorithms 
studied in this section. The improvement of the JDRA is highly noticeable with respect to the MBR 
policy, whereas the difference with UMA policy is quite negligible, being the HNN-based JDRA 
algorithm slightly better. The good performance observed with the UMA policy is due to the fact that 
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the WLAN RAN is much less loaded than HSDPA. Consequently, this policy is always the best since it 
unloads HSDPA from users as soon as they are in the coverage area of the WLAN. Nevertheless, in a 
different scenario the UMA policy may not be the best one. Figure 3 shows the probability of non-
satisfaction with a fixed number of users per service and class – 60 – distributed with different ratios 
between the hot spot and the entire cell. It can be observed that the MBR policy outperforms UMA 
when more than 80% of users are in the hot spot. Thus, if the WLAN coverage area is highly loaded it is 
not optimum to allocate all users to WLAN but distribute them among the overlapping RANs. It is 
worth highlighting that the proposed algorithm is the best one in all cases and, moreover, it extends 
the good behavior outlined by the UMA policy with low loaded WLAN to more saturated scenarios. 

 Figure 4. Figure 4. Figure 4. Figure 4. Probability of non-satisfaction with an increasing number of users. 

 Figure 5. Figure 5. Figure 5. Figure 5. Probability of non-satisfaction for different load in the hot spot. 
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B. JDRA algorithm evaluation 
Now, the same scenarios – 20 to 80 users per service and class equally split up into the hot spot and 
the entire cell and 60 users per service and class with different users distribution ratios between the 
hot spot and the entire cell – were simulated with the rest of algorithms. Non-satisfaction results are 
depicted in Figures 4 and 5. Performance of UMA and MBR policies are equivalent to that previously 
explained. If at least 80% of users are in the hot spot MBR outperforms UMA policy. Concerning the 
proposed JDRA algorithm, it is the best one in almost all situations. Only the UMA-MLWDF mix behaves 
better when RANs are sufficiently low loaded. Since HNNs find suboptimal solutions, they are not able 
to approach the optimum as UMA-MLWDF does in those cases. Nevertheless, the difference is not of 
much relevance taking into account that in comparison the proposed algorithm can reduce the non-
satisfaction probability from 13% to 0.9% with 80 users per service and class. Besides, the behavior of 
UMA-MLWDF is highly dependent on the relative distribution between RATs and, therefore, it cannot 
be considered as a reliable algorithm for whatever heterogeneous system. 

 Figure 6. Figure 6. Figure 6. Figure 6. Average delay normalized by maximum delay. 
 
For delay-based services, the average delay normalized by the maximum delay is depicted in Figure 6, 
considering 60 users per service and class. From this graph, the UMA-MLWDF could be considered a 
better approach than the one proposed in this paper, particularly if more than the 30% of users are in 
the hot spot. Nevertheless, although UMA-MLWDF reduces the average delay about 30 times at 50% 
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and about 75 times at 60% this fact is not reflected in the non-satisfaction probability (recall Figure 5), 
where UMA-MLWDF doubles the non-satisfaction at 50% and is only 10 times lower at 60%. This 
difference in the average delay and non-satisfaction probability stresses that resources are not being 
allocated to the correct users, i.e. those that need them more. Moreover, note that again the behavior of 
UMA-MLWDF is highly degraded when the WLAN network gets overloaded. In that case the 
normalized delay for UMA-MLWDF can be up to 170 times greater than the HNN-based algorithm. On 
the other hand, the MBR-MLWDF approach shares also this behavior, although in this case the non-
satisfaction probability is much worse than that achieved with HNN. The main reason for this 
difference is that MLWDF is not able to distinguish between different user classes and, hence, the non-
satisfaction probability of high priority classes increases despite of the average delay decreasing.  

 Figure 7. Figure 7. Figure 7. Figure 7. Average bit rate normalized by minimum bit rate. 
 
Finally, Figure 7 shows the average bit rate normalized by the minimum target bit rate for 60 users per 
service and class. The previous effect is not significant and all techniques have very similar behavior 
until 70% of users in the hot spot. From that point, the UMA policy starts allocating less bit rate to 
users than the rest of techniques due to the saturation of WLAN. 
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VI. Conclusions 
This paper has presented a JDRA algorithm that jointly distributes users of diverse types of service and 
classes among RANs of different technologies and the RANs resources among users. 
HNN have been used to solve this complex problem. The neuron parallel interconnection of these 
networks have made the definition of the algorithm easier as shown in the rationale followed in 
section III.D. Moreover and most importantly, hardware implementations of HNNs have very fast 
response times what makes feasible a real-time functioning of the algorithm. 
The JDRA algorithm has shown a significant reduction in the non-satisfaction probability of users as 
compared with other RAT selection techniques. Moreover, it approaches the UMA policy when 
optimum. The proposed algorithm is also better than other DRA techniques proposed in the literature 
unless for low loaded networks. Despite of the sub-optimum nature of HNN solutions, in those cases 
the MLWDF algorithm is near optimum, which justifies the slight differences. Nevertheless, the region 
where MLWDF outperforms the proposed algorithm is below a threshold of non-satisfaction 
probability of 0.05%. Therefore, it is preferred the use of the HNN-based JDRA algorithm instead of 
MLWDF since it reduces the non-satisfaction probability from 13% to 0.9% for other cases  
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