SUBMITTED TO ELSEVIER NEUROCOMPUTING

Fast Hopfield Neural Networks
Using Subspace Projectidns

Daniel Calabuig, Sonia Gimenez, Jose E. Roman,Bds®nserrat
dacaso@iteam.upv.es, sogico@teleco.upv.es,

jroman@itaca.upv.es, jomondel@iteam.upv.es,

Abstract — Hopfield Neural Networks are well-suitiedthe fast solution of complex
optimization problems. Their application to real optems usually requires the
satisfaction of a set of linear constraints thandae incorporated with an additional
violation term. Another option proposed in the ritieire lies in confining the search
space onto the subspace of constraints in suchyatheat the neuron outputs always
satisfy the imposed restrictions. This paper pregos computationally efficient
subspace projection method that also includes ‘eiaupdating step mechanisms.
Some numerical experiments are used to verify thedgperformance and fast

convergence of the new method.
Keywords — Hopfield Neural Networks, Linear Consstts, Projection.

|. Introduction

A Hopfield Neural Network (HNN) is a specific kindf recurrent neural network
designed for the minimization of an energy functibat contains several terms [9].
From the Hopfield neuron model, any problem that lba written in terms of a second
order Lyapunov function can be solved with a quidimal solution using HNNs.
These neural networks have gained much relevanteeitast decade as a good tool to
solve complex optimization problems mainly thanks their fast response time.
Certainly, one of the main advantages of neurdirigies is the high computational
speed obtained through their hardware implememstiavhich is even more valuable
when considering their usage for industrial appioces. Actually, the use of HNNs has

! NOTICE: this is the author’s version of a worktheas accepted for publication in Neurocomputing.
Changes resulting from the publishing process, saglpeer review, editing, corrections, structural
formatting, and other quality control mechanismsymat be reflected in this document. Changes may
have been made to this work since it was submittegublication. A definitive version was subsedilgn

published in Neurocomputing, vol. 73, no. 10, pp4-1800, 2010, DOI:10.1016/j.neucom.2009.12.031.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

been recently suggested for several time-constlapractical problems due to this

characteristic — see for example [2], [4], [5].

However, HNNs have also acquired many detractocause of the poor quality of the
obtained solutions, mostly when the energy functgonon-convex [8]. This condition
provokes some additional problems related to thevem@ence to non-desired local
minima. These problems could be solved by meana 6he tuning of the energy
function parameters that properly penalizes the-desired states [4]. In general, a
mathematical analysis of the borderline cases imeigierformed in order to derive the
proper weighting values. However, this problem Ilpee® even more complex in
practical optimization problems, since reality imps a set of strict constraints that
must be taken into account. Consequently, in readlpms a set of linear constraints is
incorporated in the energy function, adding somditemhal constraint violation terms
[9]. Despite being a common practice, some auth@ge demonstrated that the
inclusion of the violation terms results in moteely invalid solutions [13] and even in
a change in the network behaviour [3]. The undegyproblem that causes these
convergence problems lies in the fact that the taysts run contrary to the constraint
terms and, as a result, the networks converge dal lminima far from the absolute

minimum.

In order to tackle this problem, some authors psegoto confine the HNN to the
feasible constraint subspace, hence ensuringribedolution validity [6], [11]. Chu [6]
proposed to project the energy gradient, whichciaidis the direction of movement,
modifying the neuron inputs in such a way that tle@ron outputs are always in the
constraint plane. Although this seminal work was flist one bringing forward the
usage of Projection-based HNNs (P-HNNSs), it assuraedontinuous-time neural
network and no reference was made to more reatistitputer implementations which
are inherently discrete in time. The main consegeerns that discrete-time
implementations continuously separate from the ild@ssubspace due to large
computational errors when neurons are near theerees. Moreover, the projection
matrix was explicitly calculated from the consttaimatrix, without considering issues
of practical relevance such as computational efficy and numerical robustness. On
the other hand, Smitkt al.[11] defined an iterative mechanism based onriteggration

of the projection of the neuron outputs — inste&grojecting the energy gradient —

SUBMITTED TO ELSEVIER NEUROCOMPUTING

together with an annealing technique for escapowgll minima by permitting, in a
controlled way, increments of the energy functi@omparing this mechanism with [6],
both use the same calculation method for the pliojeenatrix. However, Smitlet al.

incorporated more effective means to guarantedlisfabnd convergence to feasible

solutions, but at the expense of extremely increpie computational burden.

This paper presents a new, computationally efficerbspace projection method that
includes the variable updating step mechanism megpdy Talavan and Yanez [12].
Once the direction of movement is confined in thiespace of constraints, neuron states
are modified so that the energy is reduced as masgbossible. The proposed method
performs projections by means of the orthogonabmatvith respect to an appropriate
basis of vectors. This basis is dynamically augent order to guarantee that the
modified neuron state vector does not exit the epat allowed solutions. This

numerical procedure for the projection is compotaily efficient.

Concerning the implementation of this Fast HNN (RN, it is worth highlighting
that, although some authors state that the HNNoresp could be attained in a few
microseconds [2], this order of magnitude corresisonwith the analogue
implementation of continuous HNN. Neverthelessfasahe performance of HNN has
been determined assuming a discrete-time implerientan computers and without
implementing the analogue circuit. This fact is du¢he enormous size of the hardware
network when considering a high number of neurams the difficulty of accurately
implementing the resistor values, which can chareje/ork behaviour. In fact, the few
hardware implementations found in the literatureszehdeen developed on digital
devices, for example [1], in order to reduce thee sbf the network and solve the
precision problems in the resistors’ values. Howetlgese implementations lose the
benefits of the parallel interworking, since thegke use of a central processing unit to
update the neuron outputs sequentially in eaclatiter. An implementation on a
computer can exploit the increasing potential ahfpa@lism offered by current processor
architectures. The proposed F-HNN method retains thherent capability of
parallelization so that fast response times canekgected. Even in a sequential
implementation, the method presents advantagese $omerical experiments are used
to verify the performance and fast convergencehefgroposed method as compared

with other P-HNN techniques.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

II. Mathematical Foundations of the Fast Hopfieldudal Network

The objective of this section is to describe thennmaathematical principles on which
the F-HNN proposed in this paper is based. With #im, the classical HNN is firstly
explained. Next, there is a description of the twain concepts that, jointly used,
enable the fast convergence of the new neural mktwioe variable updating step and
projection of the energy gradient. In Section IaBother possibility that consists in
executing variable reduction methods before tharaph search is discussed, justifying
why this option was dismissed. The last part of #$ection deals with some efficient
computational methods to reduce the number of d¢ipesa and numerical errors.

Section Il summarizes the set of steps to be takeach update of the F-HNN state.

A. Fundamentals of Hopfield Neural Networks

HNNSs can be completely defined with an energy fiamcof the form [9]:
E(v(1)= —%v(t)' Tv(t)-i'v (1),)

where v(t) is the Nx1 vector of the neuron outputs at tinte with elements
V, (t)D[O,l], T is an Nx N symmetric matrix, is an N x1 vector, with eIement?[ij
and I, respectively, of constant parameters that defieentural network, antll is the
number of neurons. These parameters should beteglso that the energy minima
inside the unit hypercube, that i¥ (t)D[O,l], are the desired solutions of the

optimization problem.

Let d (t) be defined as th&\l x1 vector of the updating direction at tinhe Then, each

neuron is updated following:

v, (t+2) =Y (1)+4 (1), @
0, d.(1)> 0V (=1
A (t)=+0, d (t)<oVM (t)=0, (3)

B(t)d (t), otherwise,

where B(t)>0 is the updating step at tinte and d, (t) is thei-th element ofd (t).
The updating step and direction must be selectedaice the network converge towards

a local minimum of the energy. For that reason, upeating direction is typically

SUBMITTED TO ELSEVIER NEUROCOMPUTING

minus the energy gradient in the bibliography, sint points to the maximum
decrement of the energy. However, any directiom &@itnegative directional derivative
decreases the energy too and hence is also a goutidate. The updating step is
typically constant but, if so, has to be sufficlgnsmall to prevent oscillations.

Therefore, a lot of iterations are needed untildbevergence point is reached.

B. Variable Updating Step

The Variable Updating Step (VUS) technique was psepl by Talavan and Yéafiez [12]
to increase the convergence speed of the neurabriet The idea is to move in the
direction d(t) until the energy minimum — in that direction —réached. The energy

over directiond (t) is:

E(v()+ad ()= -2 (v +ad) T(®)+ad @)1 (v ()+ad®). @

E(v (t)+ad (t))= E(v (t))— Sa+ S, (5)
s =d(t) (Tv(0)+i), (6)
S, =-d(t) Td(¥). @)

Parametera is any possible updating step. The energy of €3 guadratic function
with respect toa . Thus, it has a critical point that can be eithemaximum or a
minimum. This critical point is [12]:

dE(v(t)+ad(t))

da

- _S
=0=>aq,=—. 8
S (8)

a=a

It is worth noting thatS is minus the directional derivative of the enerer the
direction d(t). Therefore, let us assume th&t=0 and hence that directiod (t)

points towards points with less energy, that is:
Oe>0:0a,0<a<e — E(v(t)+ad(t))< E(v(1)). 9)

Moreover, S, is the second derivative of the energy of (5) witbpect tar . Therefore,

if S,>0 then the critical pointy, is a minimum of (5). Conversely, &, <0 thena,

is a maximum. In the first case, the VUS shouldoeat most, since greater steps will
not further reduce the energy and could even iseréa In the second case, the VUS

can be as high as possible, since the energy avillimuously decrease in the direction

d(t).

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Additionally to the previous paragraph, the VUS msatisfy some other constraints.
More specifically, the updated neuron outputs nmasiain in the unit hypercube, that
is, v(t)+AB(t)dt)0[0,]". For this aim it is necessary to take into accotine
distances between the current neuron outputs anéxtiemes 0 and 1. Let us define
I(t) as theN x1 vector of limits whose elements are:

1_\/& (t) d (t)>0

d (t ' ’

()= —2—8, d (t)<o, (10)
o, d (t) =0.

Then, the VUS is:

50)- min{miin{li)} ,ao}, S,> 0, an
miln{li)} S, <0.

C. Projection of the energy gradient

Usually the solution of a specific problem musticty satisfy certain conditions.
Examples of these problems are the Travelling SsesProblem (TSP) [9], th& -
Queens Problem (NQP) [10], and some resourceshdistn algorithms [2], [5]. In all
these problems, some neuron subsets can be iddnitifisuch a way that the desired
solution has only one neuron active in each subset.

In this paper, the NQP has been chosen as a aabe $he scope of this problem is to
distribute a set of) queens on &xQ chessboard in such a way that no queen could
attack the others. The HNN proposed to solve thablpm has a total 0’ neurons.
The neurons can be organized in a neuron matrixhao if a neuron located at
coordinates(i, j) is active then there is a queen located at theselmates. Since there
can be only one queen in each row, any solutiothi® problem must satisfy the
requirement that the sum of all neuron outputsacheow is exactly 1. Moreover, there
can be only one queen in each column. Therefoeesdtim of all neuron outputs of each

column must be exactly 1 too. In general, in mamyinoization problems, valid

SUBMITTED TO ELSEVIER NEUROCOMPUTING

solutions must satisfy some strict constraints tiaat be written as linear equations, that
is:

Av =b, (12)
where A is an MxN matrix andb is an M x1 vector that defineM strict
constraints. This system defines a subSetof network states inside the hypercube
where theM constraints are satisfied, that is:

F={v:av=bv0[0q'} (13)

Although the initial statev (O) belongs toF , the direction of movement — generally
minus energy gradient — may move the network staiy from this subset. Obviously,
if the problem is well defined, the stable statobgs toF and thus the network must
return to it. Figure 1 represents this idea. Thaicl path is an illustrative neuron
evolution followed by an HNN. Nevertheless, if titable state is inside the subget
reaching it could be faster if the search spacesweduced to this subset. Alternatively
to the typical path, a new path could be followddah entirely belongs té .

Let us defineF as the extension d& to all RN, that is:
F ={v:Av=b}, (14)

and let us defind-, as the set parallel t6 that has the coordinate origin, that is:
Fo={v:Av=0}. (15)

Then, if the neuron outputs at some tim,ev(t), belong toF , and the updating

direction belongs td-,, thenv(t +1)DE independently of the updating step, since:
Av(t+1)=A(v(t)+B(t)d(t))=Av(t)+B({t)Ad(t)=b+A(t)0=b. (16)

Moreover, if the VUS is selected following the exphtion of previous section, then
v(t+1)DF , since the neuron outputs will always belong te timit hypercube. As

previously mentioned, other works use the directdrminus energy gradient as the
updating direction. Then, the path followed by m#uputputs is something similar to
the typical path depicted in Figure 1. It is alsmsgible to project the energy gradient
into the setF, to define a new updating direction. In this cébe, alternative path is

similar to that of Figure 1. Let us defirfe@ as the projection matrix that projects any

point onto the sek,, that is:
APv =0, VvERY, (17)

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Then the updating direction of the alternative path

d(t)=P(Tv(t)+i) (18)

This direction satisfiesS =0 since the angle betweeh(t) and the direction of minus
energy gradient is always less than or equal tpe8@? thus:

§=0() (e (9)=l QT (+ileosr= 0 @9

where ||| is the norm ofx, and y is the angle betweed (t) and the direction of

minus energy gradient.

D. Projectionsin the hyper cube facets

The main challenge of the projections approachois to deal with projections in the
hypercube facets. Inside the facets, at least eneon is at one of the extremes 0 or 1.
For instance, if neuron is at the extremy/ (t)= 0 at some timd, that neuron should
not be modified if the updating direction ¢$(t)< 0; see (3). This fact is equivalent to
changing the updating direction frod(t) to a(t), where the components af(t) are:

a, (t)={gj © s (20)
Since Ad (t): 0, thenAd (t)¢ 0 due to the change performed in (20). This factmea
that the next neuron state will not belongRa Obviously, neuron outputs must leave
neither the unit hypercube nor the constraints [gadxs. Both requirements can be
accomplished by adding new constraints to ma&ix More specifically, (20) can be
understood as a new linear constraint of the f&r,—rﬁt): 0. Therefore, it is possible to
build a matrix B with all the new constraints. Then, the projectimatrix P is
computed from the combination of matricasand B so that:

[g] Pv=0,vveR". (21)

Finally, the updating direction is now:
d(t) = P(Tv(t) +1i). (22)

Continuing with the previous example, this updatotigection not only belongs to
subsetF, but, additionally, has its-th component null.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

E. Reduction of the dimensionality of the problem

For an HNN of N neurons andM strict constraints, the reader could think thgbad
option could be to reduce the number of variablest is, to transform théd neurons
problem intoN—M instead of projecting the energy gradient in evégation. This
type of transformation and the projections havémalar computational cost. The idea
would be to perform the transformation only oncehs beginning of the algorithm,
hence the expected computational gain. Neverthelesgproblem with this approach is
that the hypercube becomes a convex polytope irstitispace and it is not easy to
know whether any of th& — M new neurons has reached one of the facets. Theskas
way to confirm this is to undo the transformaticheck it, modify neuron outputs if
necessary — something similar to section II.D — padorm the transformation again.
This procedure should be done for all iterationd & obviously, hugely more costly

than gradient projections. For this reason, thie@dure is not recommended.

F. Practical realization of the projection

Although it has been done so far in other workdidgavith projected HNNs, explicitly
computing the projector matrie, for the projection in (18) is not practical besalof
the computational inefficiency and also due to pb#t difficulties related to numerical
error. A better approach can be derived from amades analysis. The subspakeg is
the null space of matriA . It is well known that the null space of a matisxthe
orthogonal complement to the row space of that imatrthe subspace spanned by its
rows. In this settingP is the orthogonal projector onto the null spac&ofOrthogonal
projectors admit a simple representation. (etbe anNx M matrix whose columns
constitute an orthonormal basis of the row spaceAqof that is, QQ=1 and
span(Q) = spa@'). Then, the projector can be written &=1-QQ'. With this

representation, the projection of vectorcan be done with:

Px = (—QQ')<=X-QQ'X. (23)

That is, first the vector is projected onto thespdre spanned by the columnspf(the
row space ofA), and then this projection is removed from thegioal vector. This

procedure is extensively used in many areas of nigaidinear algebra and is often

SUBMITTED TO ELSEVIER NEUROCOMPUTING

referred to as the orthogonalization of a vectothwespect to a set of orthonormal

vectors.

An interesting property of orthogonal projectorstl@t, in cases of partitioning the
columns ofQ in two setsQ = [Ql Q,] then the projection can be written as:

Px(2Q2X lQ)< (24)

Thus, orthogonalization can be applied first willstja subset of vectors and then the
final result is obtained after orthogonalizing thvevious outcome with respect to the
rest. Note that the order is irrelevant becal(seQzQ'ZX —QlQ'l) commute, since
Q,Q, =0. In the limit, the orthogonalization can be cairigut one vector at a time.
This procedure is known as the Modified Gram-Schymad opposed to the Classical
Gram-Schmidt procedure of (23). In floating poinittanetic, neither classical nor
modified Gram-Schmidt procedures guarantee thatekelting vector is orthogonal to
full machine precision. Therefore, in order to eescomplete numerical robustness, it

iS necessary to use iterative reorthogonalizaffgn [

In the context of F-HNN, the explicit computatiohtbe projectorP is replaced by the
initial computation ofQ, that is, the orthogonalization of the rows Af This can be
done, for instance, by means of Gram-Schmidt proeedfor computing the QR matrix
decomposition. This initial step also has the athge that it will eventually detect
redundant constraints, since when the result afrirogonalization is the zero vector it
means that the original vector already belongetthéosubspace. On the other hand, the
property of (24) allows additional constraints ® diynamically included as necessary.

This is essential for adding new constraints asagxed in section I1.D.

[Il. Different Alternatives for Projection Hopfieldeural Networks
A. Fast HNN (F-HNN)

This is the P-HNN proposed in this paper, which lbarsummarized as follows:
» Step 1: Initialize matrixA and deriveQ . Define a random vectov (t) for
t=0, so thatAv(0)=b.
* Step 2: Calculate the energy gradient#s=-Tv (t)-i.
* Step 3:

SUBMITTED TO ELSEVIER NEUROCOMPUTING

1. Obtain the updating direction a{t) = -0E + QQ'UE.
2. Check that all neurons will be confined in the hypke (see the
procedure described in section 11.D).
3. If all neurons are confined, go to Step 5. Otheewip to Step 4.
e Step 4: While there is any neuron not confinechmhypercube:
1. Add new constraints t& and derive the new columns &¥,Q, .
2. Updated (t) — d(t)-Q,Q%d(t).
3. Q=[QQ.]
+ Step 5: Calculates, S,, I(t), and B(t) following the reasoning described in
Section II.B — Equations (6), (7), (10), and (I&gpectively.
+ Step 6: Update neuron states\g+1) = v (t)+ S(t)d(t).
 Step 7:t — t+1. Go to Step 2 until the termination criterion istm

All of this procedure is shown in Figure 2.

B. HNN with Gradient Projections (GP-HNN)

As described in the introduction, Chu [6] propo#ieel projection of the energy gradient
considering a continuous HNN. However, Chu did taite into account all the

implications brought by the discrete-time implenagioin of his proposal.

The GP-HNN method is the discrete counterpart ¢faidd can be understood as a
simplification of the F-HNN method, since no VUShaique is used. Rather, a fixed
time step has been assuméd, Therefore, the GP-HNN procedure is almost theesam
as F-HNN except that Step 5 is removed gfift)=At. Obviously, At must be

carefully selected to guarantee the fast convegémthe minimum of the energy.

C. Smith HNN (S-HNN)

The proposal of Smitht al.[11] can be summarized in the following steps:
e Step 1: Initialize matrixA and deriveQ . Define a random vector/(t) for
t=0, so thatv(O)D[O,]]N. Obtain s=A'(AA ‘)_lb and initializeU =1 and
L=1.
* Step 2: Calculate the energy gradient#s=-Tv (t)-i.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

* Step 3: Updaté (t)=1-2e"" and generate a randan(t)0[k (t),1].
+ Step 4: Calculate = v (t)- At [&r (t)OE.
» Step 5: Perform the projection and clipping progedaccording to the following
steps:
1. Find the projection ok onto the constraint subspace: =x-QQ'x +s.

2. Introduce x” inside the unit hypercube, modifying all its elemt®eas

follows:
U, xP=2U
xP =1L, xP<L
p_
X L, otherwise

3. x=x" ande=|Ax~b|. If g <tol,0di=1--N, go to Step 6. Otherwise,
go to Step 5.1.
 Step 6: Update neuron states\a& +1)=x and also updaté) — U -¢, and
L — L+¢&, according to the periodicity described in [11].

« Step 7it — t+1. Repeat from Step 2 un#l(t)=1 anddv/dt=0 forall i .
Comparing this procedure and the one proposedl ftlcan be noticed that in Step 5
the Gram-Schmidt procedure has been used instehé direct projection, according to
the explanation given in Section Il.F. This hasrbeeade in order to increase the
efficiency of the procedure and allow a fair congam between the three alternatives.
It is also important to highlight that, by meansSiép 3 and Step 4, an annealing-like
procedure is implemented allowing punctual incretmesf the energy function. This
mechanism was devised by Smi¢h al. to avoid local minima and increase the
convergence probability. Step 5 is a projection elimping procedure that converges to
a point inside the unit hypercube and the condsanbspace. Updatind and L as
shown in Step 6 makes the clipping more severe gatth new iteration, hence forcing

the neural network to converge.

In this paper, the same constant parameters definddl] are employed, namely,
At =10, & =107, and7 =40. The value ofAt is the same as that used in GP-HNN.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

V. Convergence of F-HNNs

The main characteristic of HNNs is that they alwagsnverge. Nevertheless,
projections and VUSs may change the good behadbtiNNs. In order to prove the

convergence of F-HNNs, it is worth highlighting twbaracteristics that F-HNNs share
with HNNSs:

« The energy function is a quadratic function defimeside the unit hypercube.
Thus, it is upper and lower bounded inside the hyydze.

« From (19), the direction of minus the projectiontloé energy gradient points to
neuron states with less energy. Moreover, the ceatipn of the VUS ensures
that the minimum in that direction is never excekdeonsequently, the energy

will be always reduced from one iteration to th&tne

Therefore, F-HNNs must always converge to a pomtdesthe energy cannot be reduced
unlimitedly. Finite precision calculus in computemsay produce round-off errors

preventing convergence when the network is vergecto a minimum and neuron states
change less than the round-off error. This candbheed with a tolerance value greater
than the round-off error. This way, if neurons véeygs than the tolerance, the network

is assumed to converge. In this paper the toleranteis set to 10 for all algorithms.

V. Numerical Results and Discussion

This section compares different approaches usiag\NiQP. As previously mentioned,
for the NQP, neurons are usually organized in aimédrm. Nevertheless this does not
invalidate the vector notation of previous sectidnsfact, the matrix form aims only at
making writing and understanding the different terof the energy function easy.
Therefore, it is important to remember that, algfflosome equations of this section use
two indices to refer to a specific neuron outpt set of all neurons will still be

grouped into the column vect(vr(t) just as in previous sections.

The objective of the NQP is to distribu€@ queens into @*Q chessboard in such a
way that they could not attack each other. The gnéunction used to solve this

problem is [10]:

SUBMITTED TO ELSEVIER NEUROCOMPUTING

S0 O)-43(S0 01 23 Su -1 «

Jll

25
B O Q B © Q (25)
F=I 2V 2 Vaa O F=22M) 2 Ve« (D]
2 j=1i=1 < k<N 2 j=1li=1 K k=N
e e

The first term aims at allowing only one active r@uper column and, hence, only one
gueen in each column of the chessboard. Simil#inly,second term tries to force only
one neuron to be active in each row. The last emms$ are focused on the diagonals of
the chessboard. Whereas rows and columns must braetly one queen each,

diagonals can have one or zero queens. These &eminimized in those situations.

The three approaches described in section Il duelied in this section. The
performance of all approaches was tested in tefrttseonumber of iterations needed to
reach equilibrium, the probability of reaching abodosolution, and computational cost.
These performance indicators were obtained usimgpaber simulations for different
numbers of queens. More specifically, 5000 différaitial states were used for each
quantity of queens ranging fro@ =4 to Q =16.

Figure 3 shows the average number of iteration# antequilibrium state is reached.
The differences between the algorithms are notdwofBP-HNN needs 10 times fewer
iterations than S-HNN, whereas F-HNN needs 10 tifeaser than GP-HNN and 100
times fewer than S-HNN. The good performance of NMNHhighlights the benefit of

using a VUS. The high number of iterations of S-HMNnainly due to the Simulated

Annealing (SA) procedure since the system mustdely “cooled”.

The probability of reaching a good solution of tNP is very similar for all the

approaches. Specifically, S-HNN reached a goodtisollb2.7% of the time, GP-HNN

reached one 56.0% of the time, and F-HNN did s0%¢of the time. These values are
also the probabilities of reaching the global optim The energy function of (25) has
been defined to be minimum for the valid/good Sohd. Other stable states always
have more energy. Therefore, the three technigares Yeery similar behaviours in terms
of reaching the global optimum. It is worth notitigatt S-HNN has the worst behaviour

in spite of using an SA procedure. This is duewo tmain causes. First, the SA

SUBMITTED TO ELSEVIER NEUROCOMPUTING

procedure is not as good as it may seem initidllye “cooling” procedure needs too
many iterations to converge with respect to theroupment in the probability of good
solutions. Second, the mechanism of projection elfgping used by S-HNN for
confining the neuron states into the constraintsspace produces severe instabilities.
Although this procedure converges to a point, gost may be very different in two
contiguous HNN iterations. For that reason thepafig is more and more severe with
every new iteration, which forces the neural netwtorconverge. The main problem of
this procedure is that the convergence may be doesen if the neuron states are far
from a good solution.

Finally, Figure 4 depicts some illustrative resufsthe computational cost of all the
approaches. The three techniques were simulatéideosame computer, an Intel Core 2
Duo processor T7500 working at 2.2 GHz and withB @& physical RAM, using a
prototype in MATLAB. As can be observed, S-HNN imopes its performance with
respect to Figure 3 and gets very close to GP-HN¥¢refore, although S-HNN needs
many more iterations to converge, each iterationlmsolved faster. Nevertheless, this
fact does not suffice for S-HNN to be the best apph. F-HNN still has the best
behaviour, reducing the time needed more than lgrifo comparison to the other
technigues. Although this study was performed liergpecific case of the NQP, it is not
difficult to understand that F-HNNs maintain thegood performance in other
applications. Comparing GP-HNNs and F-HNNs, the nmdiiference is the use of
VUS. The faster response time of HNNs using VUS prawed in [12] and hence it is
clear that F-HNNs will always outperform GP-HNNs.edarding S-HNNs, the
difference is how they project over the subspaocd emsure that all neurons remain
inside the unit hypercube. S-HNNs perform the progen and clipping procedure of
Step 5 (described in Section III.C) iteratively, embas F-HNNs use the
orthogonalization explained in Section II.F. Itrist easy to know which technique is
faster, although for the NQP the fact that F-HNNgperform S-HNNs is completely
clear. Moreover, the projection and clipping pragedneeds the selection of a tolerance
which is not trivial and makes the method of orthiogjization more robust since it does

not need any additional parameters.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

VI. Conclusions

This paper has analysed two well-known alternatif@s incorporating the strict
satisfaction of linear constraints into Hopfield uxal Networks (HNNs) through the
usage of subspace projections: the HNN with Gradrenjections (GP-HNN) and the
Smith HNN (S-HNN). Both models have been optimizedheir execution time by
using more efficient projection methods. Moreovarnew P-HNN model has been
proposed, called Fast HNN (F-HNN), that combines dfficient projection of the
energy gradient with a variable updating step teplen Once the direction of
movement is confined in the subspace of constramagron states are modified so that
the energy is reduced as much as possible. Theysage of both concepts allows a
faster convergence of the new neural network, rnedutche required number of

iterations significantly.

The advantages of F-HNN have been proven throutjheat comparison with the other
two proposals. Thé\ Queens Problem has been chosen as a case studgddua is a
classic optimization problem and, besides, it hesnbwidely used in the field of HNN.
First, the numerical experiments have revealedRRANN needs far fewer iterations to
reach the equilibrium state than the other twora#tves. Obviously this fact is
motivated by the usage of the variable updatinp,sighich is especially efficient once
the energy gradient is projected to the constrsiMitspace. Aside from converging in
fewer iterations, the probability of reaching aidasolution is kept almost identical
compared with S-HNN and GP-HNN. In addition, it Hasen shown that F-HNN
requires less computational time. With a convergiqgrersonal computer, the F-HNN
model was able to solve the 16 Queens problemsis tlean four seconds, being up to

twenty times quicker than the other two proposals.

Thanks to the mathematical foundations derivedis paper, and as a future work, the
design of an optimized implementation of F-HNNsaoparallel platform, for example
using modern multi-core processors, is immediatedgsible. In order to calculate the
next state of the neuron outputs, the most cogibration in the F-HNN algorithm is
the matrix-vector product required to compute theadgent, which is easily
parallelizable. The rest of the computations, idoig orthogonalization, also fit well in

a parallelization context. As a conclusion, in edehation all neurons can be updated

SUBMITTED TO ELSEVIER NEUROCOMPUTING

simultaneously, calculating the projection matrndahe updating direction vector at
once. It is worth noting that all neurons must famed before moving to the next
iteration, and hence the lower the number of itenat the faster the system response.
With regards to this metric, again, F-HNNs exhithie best results, justifying their
interest with regards to HNN parallel implementatio

References

[1] D. Abramson, K Smith, P. Logothetis, and D. DUkBEGA based implementation
of a Hopfield Neural Network for solving constrasdtisfaction problems, in: Proc.
of Euromicro Conference, Vol. 2, (IEEE, Vasterd@9d) 688—693.

[2] C. W. Ahn and R. S. Ramakrishna, QoS provisioningaic connection-
admission control for multimedia wireless networksing Hopfield Neural
Networks, IEEE Transactions on Vehicular Technol68y(2004) 106—-117.

[3] S. Aiyer, M. Niranjan and F. Fallside, A theoreticavestigation into the
performance of the Hopfield Model, IEEE Transacsiamn Neural Networks 1
(1990) 204-215.

[4] D. Calabuig, J.F. Monserrat, D. Gomez-Barquero, é@ndLazaro, An efficient
dynamic resource allocation algorithm for packeitshed communication
networks based on Hopfield neural excitation methidelurocomputing 71 (2008)
3439-3446.

[5] D. Calabuig, J.F. Monserrat, D. Gomez-Barquero,dn@ardona, A delay-centric
dynamic resource allocation algorithm for wirelessnmunication systems based
on HNN, IEEE Transactions on Vehicular Technology(8008) 3653—-3665.

[6] P. Chu, A neural network for solving optimizatioroplems with linear equality
constraints, in: Proc. International Joint Confeemn Neural Networks, Vol. Il
(IEEE, Baltimore, 1992) 272-277.

[7] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. We&rt, Reorthogonalization
and stable algorithms for updating the Gram-Schm@R factorization,
Mathematics of Computation 30 (1976) 772—795.

[8] M. Forti, S. Manetti, and M. Marini, A conditionf@lobal convergence of a class
of symmetric neural circuits, IEEE Transactions @mcuits and Systems | 39
(1992) 480-483.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

[9] J.J. Hopfield and D. Tank, Neural computation ofisiens in optimization
problems, Biological Cybernetics 52 (1985) 141-152.

[10] T.N. Le and C.K. Pham, A new N-parallel updatingtimoel of the Hopfield type
neural network for N-queens problem, in: Proc. iméional Joint Conference on
Neural Networks (IEEE, Montreal, 2005).

[11] K. Smith, M. Palaniswami, and M. Krishnamoorthy, uxe techniques for
combinatorial optimization with applications, IEEEransactions on Neural
Networks 9 (1998) 1301-1318.

[12] P. M. Talavan and J. Yafiez, A continuous Hopfieddwork equilibrium points
algorithm, Computers and Operations Research 325(280179-2196.

[13] G. V. Wilson and G. S. Pawley, On the stabilityttué travelling salesman problem
algorithm of Hopfield and Tank, Biological Cyberiost58 (1988) 63—70.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Figures

Hypercube

"\ \

Typical path

Figure 1. Representation of the subBetinside a hypercube, the typical path followed

by an HNN, and the alternative path that belongt to

Energy Gradient
Calculation

Y

Obtaining of the

updating direction d(t) A
Y ¢ v Y ¢ Y
S4 Calculation S, Calculation I(t) Calculation

Y

B(t) Selection -t

Y

Updating of v(t)

'

Terminate Criterion

'

Figure 2. Flowchart representation of F-HNN

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Average number of iterations

105 E T T T T
ST S-HNN
— — = GP-HNN
104 L 5
103" ==]
L -
[-
I -~
10 ¢

10!

Queens

Figure 3. Average number of iterations of the tHPeldNN alternatives

Average simulation time (s)

10% ¢

101 3

— — = GP-HNN
F-HNN

10° ¢

1071 ¢

102
4

8 10

12 14 16

Queens

Figure 4. Average simulation time of the three PNHalternatives

