
SUBMITTED TO ELSEVIER NEUROCOMPUTING

Fast Hopfield Neural Networks
Using Subspace Projections1

Daniel Calabuig, Sonia Gimenez, Jose E. Roman, Jose F. Monserrat

dacaso@iteam.upv.es, sogico@teleco.upv.es,

jroman@itaca.upv.es, jomondel@iteam.upv.es,

Abstract – Hopfield Neural Networks are well-suited to the fast solution of complex

optimization problems. Their application to real problems usually requires the

satisfaction of a set of linear constraints that can be incorporated with an additional

violation term. Another option proposed in the literature lies in confining the search

space onto the subspace of constraints in such a way that the neuron outputs always

satisfy the imposed restrictions. This paper proposes a computationally efficient

subspace projection method that also includes variable updating step mechanisms.

Some numerical experiments are used to verify the good performance and fast

convergence of the new method.

Keywords – Hopfield Neural Networks, Linear Constraints, Projection.

I. Introduction

A Hopfield Neural Network (HNN) is a specific kind of recurrent neural network

designed for the minimization of an energy function that contains several terms [9].

From the Hopfield neuron model, any problem that can be written in terms of a second

order Lyapunov function can be solved with a quasi-optimal solution using HNNs.

These neural networks have gained much relevance in the last decade as a good tool to

solve complex optimization problems mainly thanks to their fast response time.

Certainly, one of the main advantages of neural techniques is the high computational

speed obtained through their hardware implementations, which is even more valuable

when considering their usage for industrial applications. Actually, the use of HNNs has

1 NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing.
Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive version was subsequently
published in Neurocomputing, vol. 73, no. 10, pp. 1794-1800, 2010, DOI:10.1016/j.neucom.2009.12.031.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

been recently suggested for several time-constrained practical problems due to this

characteristic – see for example [2], [4], [5].

However, HNNs have also acquired many detractors because of the poor quality of the

obtained solutions, mostly when the energy function is non-convex [8]. This condition

provokes some additional problems related to the convergence to non-desired local

minima. These problems could be solved by means of a fine tuning of the energy

function parameters that properly penalizes the non-desired states [4]. In general, a

mathematical analysis of the borderline cases must be performed in order to derive the

proper weighting values. However, this problem becomes even more complex in

practical optimization problems, since reality imposes a set of strict constraints that

must be taken into account. Consequently, in real problems a set of linear constraints is

incorporated in the energy function, adding some additional constraint violation terms

[9]. Despite being a common practice, some authors have demonstrated that the

inclusion of the violation terms results in more likely invalid solutions [13] and even in

a change in the network behaviour [3]. The underlying problem that causes these

convergence problems lies in the fact that the cost terms run contrary to the constraint

terms and, as a result, the networks converge to local minima far from the absolute

minimum.

In order to tackle this problem, some authors proposed to confine the HNN to the

feasible constraint subspace, hence ensuring the final solution validity [6], [11]. Chu [6]

proposed to project the energy gradient, which indicates the direction of movement,

modifying the neuron inputs in such a way that the neuron outputs are always in the

constraint plane. Although this seminal work was the first one bringing forward the

usage of Projection-based HNNs (P-HNNs), it assumed a continuous-time neural

network and no reference was made to more realistic computer implementations which

are inherently discrete in time. The main consequence is that discrete-time

implementations continuously separate from the feasible subspace due to large

computational errors when neurons are near the extremes. Moreover, the projection

matrix was explicitly calculated from the constraints matrix, without considering issues

of practical relevance such as computational efficiency and numerical robustness. On

the other hand, Smith et al. [11] defined an iterative mechanism based on the integration

of the projection of the neuron outputs – instead of projecting the energy gradient –

SUBMITTED TO ELSEVIER NEUROCOMPUTING

together with an annealing technique for escaping local minima by permitting, in a

controlled way, increments of the energy function. Comparing this mechanism with [6],

both use the same calculation method for the projection matrix. However, Smith et al.

incorporated more effective means to guarantee stability and convergence to feasible

solutions, but at the expense of extremely increasing the computational burden.

This paper presents a new, computationally efficient subspace projection method that

includes the variable updating step mechanism proposed by Talaván and Yáñez [12].

Once the direction of movement is confined in the subspace of constraints, neuron states

are modified so that the energy is reduced as much as possible. The proposed method

performs projections by means of the orthogonalization with respect to an appropriate

basis of vectors. This basis is dynamically augmented in order to guarantee that the

modified neuron state vector does not exit the space of allowed solutions. This

numerical procedure for the projection is computationally efficient.

Concerning the implementation of this Fast HNN (F-HNN), it is worth highlighting

that, although some authors state that the HNN response could be attained in a few

microseconds [2], this order of magnitude corresponds with the analogue

implementation of continuous HNN. Nevertheless, so far the performance of HNN has

been determined assuming a discrete-time implementation in computers and without

implementing the analogue circuit. This fact is due to the enormous size of the hardware

network when considering a high number of neurons and the difficulty of accurately

implementing the resistor values, which can change network behaviour. In fact, the few

hardware implementations found in the literature have been developed on digital

devices, for example [1], in order to reduce the size of the network and solve the

precision problems in the resistors’ values. However, these implementations lose the

benefits of the parallel interworking, since they make use of a central processing unit to

update the neuron outputs sequentially in each iteration. An implementation on a

computer can exploit the increasing potential of parallelism offered by current processor

architectures. The proposed F-HNN method retains this inherent capability of

parallelization so that fast response times can be expected. Even in a sequential

implementation, the method presents advantages. Some numerical experiments are used

to verify the performance and fast convergence of the proposed method as compared

with other P-HNN techniques.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

II. Mathematical Foundations of the Fast Hopfield Neural Network

The objective of this section is to describe the main mathematical principles on which

the F-HNN proposed in this paper is based. With this aim, the classical HNN is firstly

explained. Next, there is a description of the two main concepts that, jointly used,

enable the fast convergence of the new neural network: the variable updating step and

projection of the energy gradient. In Section II.E another possibility that consists in

executing variable reduction methods before the optimum search is discussed, justifying

why this option was dismissed. The last part of this section deals with some efficient

computational methods to reduce the number of operations and numerical errors.

Section III summarizes the set of steps to be taken in each update of the F-HNN state.

A. Fundamentals of Hopfield Neural Networks

HNNs can be completely defined with an energy function of the form [9]:

 ()() () () ()1
,

2
E t t t t′ ′= − −v v Tv i v (1)

where ()tv is the x1N vector of the neuron outputs at time t with elements

() []0,1iV t ∈ , T is an xN N symmetric matrix, i is an x1N vector, with elements ijT

and iI respectively, of constant parameters that define the neural network, and N is the

number of neurons. These parameters should be selected so that the energy minima

inside the unit hypercube, that is, () []0,1iV t ∈ , are the desired solutions of the

optimization problem.

Let ()td be defined as the x1N vector of the updating direction at time t . Then, each

neuron is updated following:

 () () ()1 ,i i iV t V t t+ = + ∆ (2)

 ()
() ()
() ()

() ()

0, 0, 1,

0, 0, 0,

, otherwise,

i i

i i i

i

d t V t

t d t V t

t d tβ

> =
∆ = < =



 (3)

where () 0tβ > is the updating step at time t , and ()id t is the i -th element of ()td .

The updating step and direction must be selected to make the network converge towards

a local minimum of the energy. For that reason, the updating direction is typically

SUBMITTED TO ELSEVIER NEUROCOMPUTING

minus the energy gradient in the bibliography, since it points to the maximum

decrement of the energy. However, any direction with a negative directional derivative

decreases the energy too and hence is also a good candidate. The updating step is

typically constant but, if so, has to be sufficiently small to prevent oscillations.

Therefore, a lot of iterations are needed until the convergence point is reached.

B. Variable Updating Step

The Variable Updating Step (VUS) technique was proposed by Talaván and Yáñez [12]

to increase the convergence speed of the neural network. The idea is to move in the

direction ()td until the energy minimum – in that direction – is reached. The energy

over direction ()td is:

 () ()() () ()() () ()() () ()()1
,

2
E t t t t t t t tα α α α′ ′+ = − + + − +v d v d T v d i v d (4)

 () ()() ()() 2
1 2 ,E t t E t S Sα α α+ = − +v d v (5)

 () ()()1 ,S t t′= +d Tv i (6)

 () ()2 .S t t′= −d Td (7)

Parameter α is any possible updating step. The energy of (5) is a quadratic function

with respect to α . Thus, it has a critical point that can be either a maximum or a

minimum. This critical point is [12]:

() ()()

0

1
0

2

0 .
dE t t S

d S
α α

α
α

α
=

+
= ⇒ =

v d
 (8)

It is worth noting that 1S is minus the directional derivative of the energy over the

direction ()td . Therefore, let us assume that 1 0S ≥ and hence that direction ()td

points towards points with less energy, that is:

 () ()() ()()0 : ,0 .E t t E tε α α ε α∃ > ∀ < < → + ≤v d v (9)

Moreover, 2S is the second derivative of the energy of (5) with respect to α . Therefore,

if 2 0S > then the critical point 0α is a minimum of (5). Conversely, if 2 0S < then 0α

is a maximum. In the first case, the VUS should be 0α at most, since greater steps will

not further reduce the energy and could even increase it. In the second case, the VUS

can be as high as possible, since the energy will continuously decrease in the direction

()td .

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Additionally to the previous paragraph, the VUS must satisfy some other constraints.

More specifically, the updated neuron outputs must remain in the unit hypercube, that

is, () () () []0,1
N

t t tβ+ ∈v d . For this aim it is necessary to take into account the

distances between the current neuron outputs and the extremes 0 and 1. Let us define

()tl as the x1N vector of limits whose elements are:

 ()

()
() ()

()
() ()

()

1
, 0,

, 0,

, 0.

i
i

i

i
i i

i

i

V t
d t

d t

V t
l t d t

d t

d t

 −
>


= − <


∞ =


 (10)

Then, the VUS is:

 ()
(){ }{ }

(){ }
0 2

2

min min , , 0,

min , 0.

ii

ii

l t S
t

l t S

α
β

 >
= 
 ≤


 (11)

C. Projection of the energy gradient

Usually the solution of a specific problem must strictly satisfy certain conditions.

Examples of these problems are the Travelling Salesman Problem (TSP) [9], the N -

Queens Problem (NQP) [10], and some resources distribution algorithms [2], [5]. In all

these problems, some neuron subsets can be identified in such a way that the desired

solution has only one neuron active in each subset.

In this paper, the NQP has been chosen as a case study. The scope of this problem is to

distribute a set of Q queens on a Q Q× chessboard in such a way that no queen could

attack the others. The HNN proposed to solve this problem has a total of 2Q neurons.

The neurons can be organized in a neuron matrix so that if a neuron located at

coordinates (),i j is active then there is a queen located at these coordinates. Since there

can be only one queen in each row, any solution to this problem must satisfy the

requirement that the sum of all neuron outputs of each row is exactly 1. Moreover, there

can be only one queen in each column. Therefore, the sum of all neuron outputs of each

column must be exactly 1 too. In general, in many optimization problems, valid

SUBMITTED TO ELSEVIER NEUROCOMPUTING

solutions must satisfy some strict constraints that can be written as linear equations, that

is:
 =Av b, (12)

where A is an xM N matrix and b is an x1M vector that define M strict

constraints. This system defines a subset F of network states inside the hypercube

where the M constraints are satisfied, that is:

 []{ }: , 0,1 .
N= = ∈v Av b vF (13)

Although the initial state ()0v belongs to F , the direction of movement – generally

minus energy gradient – may move the network state away from this subset. Obviously,

if the problem is well defined, the stable state belongs to F and thus the network must

return to it. Figure 1 represents this idea. The typical path is an illustrative neuron

evolution followed by an HNN. Nevertheless, if the stable state is inside the subset F ,

reaching it could be faster if the search space were reduced to this subset. Alternatively

to the typical path, a new path could be followed which entirely belongs to F .

Let us define F as the extension of F to all ℝN, that is:

 { }: ,= =v Av bF (14)

and let us define 0F as the set parallel to F that has the coordinate origin, that is:

 { }0 : 0 .= =v AvF (15)

Then, if the neuron outputs at some time t , ()tv , belong to F , and the updating

direction belongs to 0F , then ()1t + ∈v F independently of the updating step, since:

 () () () ()() () () () ()1 0 .t t t t t t t tβ β β+ = + = + = + =Av A v d Av Ad b b (16)

Moreover, if the VUS is selected following the explanation of previous section, then

()1t + ∈v F , since the neuron outputs will always belong to the unit hypercube. As

previously mentioned, other works use the direction of minus energy gradient as the

updating direction. Then, the path followed by neuron outputs is something similar to

the typical path depicted in Figure 1. It is also possible to project the energy gradient

into the set 0F to define a new updating direction. In this case, the alternative path is

similar to that of Figure 1. Let us define P as the projection matrix that projects any

point onto the set 0F , that is:
 APv = 0, ∀vvvv∈ℝN, (17)

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Then the updating direction of the alternative path is:

 () ()().t t= +d P Tv i (18)

This direction satisfies 1 0S ≥ since the angle between ()td and the direction of minus

energy gradient is always less than or equal to 90º, and thus:

 () ()() () ()1 cos 0,S t t t t γ= + = +′ ≥d Tv i d Tv i (19)

where x is the norm of x , and γ is the angle between ()td and the direction of

minus energy gradient.

D. Projections in the hypercube facets

The main challenge of the projections approach is how to deal with projections in the

hypercube facets. Inside the facets, at least one neuron is at one of the extremes 0 or 1.

For instance, if neuron i is at the extreme () 0iV t = at some time t , that neuron should

not be modified if the updating direction is () 0id t < ; see (3). This fact is equivalent to

changing the updating direction from ()td to $ ()td , where the components of $ ()td are:

 $ () (), ,

0, .
j

j

d t j i
d t

j i

≠=  =
 (20)

Since () 0t =Ad , then $ () 0t ≠Ad due to the change performed in (20). This fact means

that the next neuron state will not belong to F . Obviously, neuron outputs must leave

neither the unit hypercube nor the constraints subspace. Both requirements can be

accomplished by adding new constraints to matrix A . More specifically, (20) can be

understood as a new linear constraint of the form $ () 0jd t = . Therefore, it is possible to

build a matrix B with all the new constraints. Then, the projection matrix �� is

computed from the combination of matrices A and B so that:

 	
���
�
 = �, ∀
 ∈ ℝ� . (21)

Finally, the updating direction is now:
 ���� = ����
��� + ��. (22)

Continuing with the previous example, this updating direction not only belongs to

subset 0F but, additionally, has its i -th component null.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

E. Reduction of the dimensionality of the problem

For an HNN of N neurons and M strict constraints, the reader could think that a good

option could be to reduce the number of variables, that is, to transform the N neurons

problem into N M− instead of projecting the energy gradient in every iteration. This

type of transformation and the projections have a similar computational cost. The idea

would be to perform the transformation only once at the beginning of the algorithm,

hence the expected computational gain. Nevertheless, the problem with this approach is

that the hypercube becomes a convex polytope in the subspace and it is not easy to

know whether any of the N M− new neurons has reached one of the facets. The easiest

way to confirm this is to undo the transformation, check it, modify neuron outputs if

necessary – something similar to section II.D – and perform the transformation again.

This procedure should be done for all iterations and is, obviously, hugely more costly

than gradient projections. For this reason, this procedure is not recommended.

F. Practical realization of the projection

Although it has been done so far in other works dealing with projected HNNs, explicitly

computing the projector matrix, P , for the projection in (18) is not practical because of

the computational inefficiency and also due to potential difficulties related to numerical

error. A better approach can be derived from a subspace analysis. The subspace 0F is

the null space of matrix A . It is well known that the null space of a matrix is the

orthogonal complement to the row space of that matrix – the subspace spanned by its

rows. In this setting, P is the orthogonal projector onto the null space of A . Orthogonal

projectors admit a simple representation. Let Q be an xN M matrix whose columns

constitute an orthonormal basis of the row space of A , that is, =′Q Q I and

() ()span span= ′Q A . Then, the projector can be written as = − ′P I QQ . With this

representation, the projection of vector x can be done with:

 () .= − = −′ ′Px I QQ x x QQ x (23)

That is, first the vector is projected onto the subspace spanned by the columns of Q (the

row space of A), and then this projection is removed from the original vector. This

procedure is extensively used in many areas of numerical linear algebra and is often

SUBMITTED TO ELSEVIER NEUROCOMPUTING

referred to as the orthogonalization of a vector with respect to a set of orthonormal

vectors.

An interesting property of orthogonal projectors is that, in cases of partitioning the

columns of Q in two sets, []1 2=Q Q Q , then the projection can be written as:

 ()()2 2 1 1 .′= − − ′Px I Q Q I Q Q x (24)

Thus, orthogonalization can be applied first with just a subset of vectors and then the

final result is obtained after orthogonalizing the previous outcome with respect to the

rest. Note that the order is irrelevant because ()()2 2 1 1
′− ′−I Q Q I Q Q commute, since

2 1 0=′Q Q . In the limit, the orthogonalization can be carried out one vector at a time.

This procedure is known as the Modified Gram-Schmidt, as opposed to the Classical

Gram-Schmidt procedure of (23). In floating point arithmetic, neither classical nor

modified Gram-Schmidt procedures guarantee that the resulting vector is orthogonal to

full machine precision. Therefore, in order to ensure complete numerical robustness, it

is necessary to use iterative reorthogonalization [7].

In the context of F-HNN, the explicit computation of the projector P is replaced by the

initial computation of Q , that is, the orthogonalization of the rows of A . This can be

done, for instance, by means of Gram-Schmidt procedures for computing the QR matrix

decomposition. This initial step also has the advantage that it will eventually detect

redundant constraints, since when the result of an orthogonalization is the zero vector it

means that the original vector already belonged to the subspace. On the other hand, the

property of (24) allows additional constraints to be dynamically included as necessary.

This is essential for adding new constraints as explained in section II.D.

III. Different Alternatives for Projection Hopfield Neural Networks

A. Fast HNN (F-HNN)

This is the P-HNN proposed in this paper, which can be summarized as follows:

• Step 1: Initialize matrix A and derive Q . Define a random vector ()tv for

0t = , so that ()0 =Av b .

• Step 2: Calculate the energy gradient as ()E t∇ = − −Tv i .

• Step 3:

SUBMITTED TO ELSEVIER NEUROCOMPUTING

1. Obtain the updating direction as ()t E E′= −∇ + ∇d QQ .

2. Check that all neurons will be confined in the hypercube (see the

procedure described in section II.D).

3. If all neurons are confined, go to Step 5. Otherwise, go to Step 4.

• Step 4: While there is any neuron not confined in the hypercube:

1. Add new constraints to A and derive the new columns of Q , 2Q .

2. Update () () ()2 2t t t′← −d d Q Q d .

3. []2=Q Q Q .

• Step 5: Calculate 1S , 2S , ()tl , and ()tβ following the reasoning described in

Section II.B – Equations (6), (7), (10), and (11), respectively.

• Step 6: Update neuron states as () () () ()1t t t tβ+ = +v v d .

• Step 7: 1t t← + . Go to Step 2 until the termination criterion is met.

All of this procedure is shown in Figure 2.

B. HNN with Gradient Projections (GP-HNN)

As described in the introduction, Chu [6] proposed the projection of the energy gradient

considering a continuous HNN. However, Chu did not take into account all the

implications brought by the discrete-time implementation of his proposal.

The GP-HNN method is the discrete counterpart of [6] and can be understood as a

simplification of the F-HNN method, since no VUS technique is used. Rather, a fixed

time step has been assumed, t∆ . Therefore, the GP-HNN procedure is almost the same

as F-HNN except that Step 5 is removed and ()t tβ = ∆ . Obviously, t∆ must be

carefully selected to guarantee the fast convergence to the minimum of the energy.

C. Smith HNN (S-HNN)

The proposal of Smith et al. [11] can be summarized in the following steps:

• Step 1: Initialize matrix A and derive Q . Define a random vector ()tv for

0t = , so that () []0 0,1
N∈v . Obtain () 1

' '
−=s A AA b and initialize 1U = and

1L = .

• Step 2: Calculate the energy gradient as ()E t∇ = − −Tv i .

SUBMITTED TO ELSEVIER NEUROCOMPUTING

• Step 3: Update () 1 2 tk t e τ−= − and generate a random() (),1t k tα ∈    .

• Step 4: Calculate () ()t t t Eα= − ∆ ⋅ ∇x v .

• Step 5: Perform the projection and clipping procedure according to the following

steps:

1. Find the projection of x onto the constraint subspace: p ′= − +x x QQ x s .

2. Introduce px inside the unit hypercube, modifying all its elements as

follows:

,

,

,

p
i

p p
i i

p
i

U x U

x L x L

x L
otherwise

U L


≥


= ≤

 −
 −

3. p=x x and = −e Ax b . If , 1 ,ie tol i N< ∀ = L go to Step 6. Otherwise,

go to Step 5.1.

• Step 6: Update neuron states as ()1t + =v x and also update 0U U ε← − and

0L L ε← + according to the periodicity described in [11].

• Step 7: 1t t← + . Repeat from Step 2 until () 1k t = and 0idv dt= for all i .

Comparing this procedure and the one proposed in [11], it can be noticed that in Step 5

the Gram-Schmidt procedure has been used instead of the direct projection, according to

the explanation given in Section II.F. This has been made in order to increase the

efficiency of the procedure and allow a fair comparison between the three alternatives.

It is also important to highlight that, by means of Step 3 and Step 4, an annealing-like

procedure is implemented allowing punctual increments of the energy function. This

mechanism was devised by Smith et al. to avoid local minima and increase the

convergence probability. Step 5 is a projection and clipping procedure that converges to

a point inside the unit hypercube and the constraints subspace. Updating U and L as

shown in Step 6 makes the clipping more severe with each new iteration, hence forcing

the neural network to converge.

In this paper, the same constant parameters defined in [11] are employed, namely,
410t −∆ = , 5

0 10ε −= , and 40τ = . The value of t∆ is the same as that used in GP-HNN.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

IV. Convergence of F-HNNs

The main characteristic of HNNs is that they always converge. Nevertheless,

projections and VUSs may change the good behaviour of HNNs. In order to prove the

convergence of F-HNNs, it is worth highlighting two characteristics that F-HNNs share

with HNNs:

• The energy function is a quadratic function defined inside the unit hypercube.

Thus, it is upper and lower bounded inside the hypercube.

• From (19), the direction of minus the projection of the energy gradient points to

neuron states with less energy. Moreover, the computation of the VUS ensures

that the minimum in that direction is never exceeded. Consequently, the energy

will be always reduced from one iteration to the next.

Therefore, F-HNNs must always converge to a point since the energy cannot be reduced

unlimitedly. Finite precision calculus in computers may produce round-off errors

preventing convergence when the network is very close to a minimum and neuron states

change less than the round-off error. This can be solved with a tolerance value greater

than the round-off error. This way, if neurons vary less than the tolerance, the network

is assumed to converge. In this paper the tolerance, tol , is set to 10–4 for all algorithms.

V. Numerical Results and Discussion

This section compares different approaches using the NQP. As previously mentioned,

for the NQP, neurons are usually organized in a matrix form. Nevertheless this does not

invalidate the vector notation of previous sections. In fact, the matrix form aims only at

making writing and understanding the different terms of the energy function easy.

Therefore, it is important to remember that, although some equations of this section use

two indices to refer to a specific neuron output, the set of all neurons will still be

grouped into the column vector ()tv just as in previous sections.

The objective of the NQP is to distribute Q queens into a Q Q× chessboard in such a

way that they could not attack each other. The energy function used to solve this

problem is [10]:

SUBMITTED TO ELSEVIER NEUROCOMPUTING

()() () ()

() () () ()

2 2

1 1 1 1

, ,
1 1 1 1 1 1

1 1
0 0

1 1
2 2

.
2 2

Q Q Q Q

ij ij
i j j i

Q Q Q Q Q Q

ij i k j k ij i k j k
j i i k N j i i k N

j k N j k N
k k

A A
E t V t V t

B B
V t V t V t V t

= = = =

− − − +
= = ≤ − ≤ = = ≤ − ≤

≤ − ≤ ≤ + ≤
≠ ≠

   
= − + − +   

  

   
   
   + +
   
   
   

∑ ∑ ∑ ∑

∑∑ ∑ ∑∑ ∑

v

 (25)

The first term aims at allowing only one active neuron per column and, hence, only one

queen in each column of the chessboard. Similarly, the second term tries to force only

one neuron to be active in each row. The last two terms are focused on the diagonals of

the chessboard. Whereas rows and columns must have exactly one queen each,

diagonals can have one or zero queens. These terms are minimized in those situations.

The three approaches described in section III are studied in this section. The

performance of all approaches was tested in terms of the number of iterations needed to

reach equilibrium, the probability of reaching a good solution, and computational cost.

These performance indicators were obtained using computer simulations for different

numbers of queens. More specifically, 5000 different initial states were used for each

quantity of queens ranging from 4Q = to 16Q = .

Figure 3 shows the average number of iterations until an equilibrium state is reached.

The differences between the algorithms are noteworthy. GP-HNN needs 10 times fewer

iterations than S-HNN, whereas F-HNN needs 10 times fewer than GP-HNN and 100

times fewer than S-HNN. The good performance of F-HNN highlights the benefit of

using a VUS. The high number of iterations of S-HNN is mainly due to the Simulated

Annealing (SA) procedure since the system must be slowly “cooled”.

The probability of reaching a good solution of the NQP is very similar for all the

approaches. Specifically, S-HNN reached a good solution 52.7% of the time, GP-HNN

reached one 56.0% of the time, and F-HNN did so 54.0% of the time. These values are

also the probabilities of reaching the global optimum. The energy function of (25) has

been defined to be minimum for the valid/good solutions. Other stable states always

have more energy. Therefore, the three techniques have very similar behaviours in terms

of reaching the global optimum. It is worth noting that S-HNN has the worst behaviour

in spite of using an SA procedure. This is due to two main causes. First, the SA

SUBMITTED TO ELSEVIER NEUROCOMPUTING

procedure is not as good as it may seem initially. The “cooling” procedure needs too

many iterations to converge with respect to the improvement in the probability of good

solutions. Second, the mechanism of projection and clipping used by S-HNN for

confining the neuron states into the constraints subspace produces severe instabilities.

Although this procedure converges to a point, this point may be very different in two

contiguous HNN iterations. For that reason the clipping is more and more severe with

every new iteration, which forces the neural network to converge. The main problem of

this procedure is that the convergence may be forced even if the neuron states are far

from a good solution.

Finally, Figure 4 depicts some illustrative results of the computational cost of all the

approaches. The three techniques were simulated on the same computer, an Intel Core 2

Duo processor T7500 working at 2.2 GHz and with 4 GB of physical RAM, using a

prototype in MATLAB. As can be observed, S-HNN improves its performance with

respect to Figure 3 and gets very close to GP-HNN. Therefore, although S-HNN needs

many more iterations to converge, each iteration can be solved faster. Nevertheless, this

fact does not suffice for S-HNN to be the best approach. F-HNN still has the best

behaviour, reducing the time needed more than tenfold in comparison to the other

techniques. Although this study was performed for the specific case of the NQP, it is not

difficult to understand that F-HNNs maintain their good performance in other

applications. Comparing GP-HNNs and F-HNNs, the main difference is the use of

VUS. The faster response time of HNNs using VUS was proved in [12] and hence it is

clear that F-HNNs will always outperform GP-HNNs. Regarding S-HNNs, the

difference is how they project over the subspace and ensure that all neurons remain

inside the unit hypercube. S-HNNs perform the projection and clipping procedure of

Step 5 (described in Section III.C) iteratively, whereas F-HNNs use the

orthogonalization explained in Section II.F. It is not easy to know which technique is

faster, although for the NQP the fact that F-HNNs outperform S-HNNs is completely

clear. Moreover, the projection and clipping procedure needs the selection of a tolerance

which is not trivial and makes the method of orthogonalization more robust since it does

not need any additional parameters.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

VI. Conclusions

This paper has analysed two well-known alternatives for incorporating the strict

satisfaction of linear constraints into Hopfield Neural Networks (HNNs) through the

usage of subspace projections: the HNN with Gradient Projections (GP-HNN) and the

Smith HNN (S-HNN). Both models have been optimized in their execution time by

using more efficient projection methods. Moreover, a new P-HNN model has been

proposed, called Fast HNN (F-HNN), that combines the efficient projection of the

energy gradient with a variable updating step technique. Once the direction of

movement is confined in the subspace of constraints, neuron states are modified so that

the energy is reduced as much as possible. The joint usage of both concepts allows a

faster convergence of the new neural network, reducing the required number of

iterations significantly.

The advantages of F-HNN have been proven through a direct comparison with the other

two proposals. The N Queens Problem has been chosen as a case study because this is a

classic optimization problem and, besides, it has been widely used in the field of HNN.

First, the numerical experiments have revealed that F-HNN needs far fewer iterations to

reach the equilibrium state than the other two alternatives. Obviously this fact is

motivated by the usage of the variable updating step, which is especially efficient once

the energy gradient is projected to the constraint subspace. Aside from converging in

fewer iterations, the probability of reaching a valid solution is kept almost identical

compared with S-HNN and GP-HNN. In addition, it has been shown that F-HNN

requires less computational time. With a conventional personal computer, the F-HNN

model was able to solve the 16 Queens problem in less than four seconds, being up to

twenty times quicker than the other two proposals.

Thanks to the mathematical foundations derived in this paper, and as a future work, the

design of an optimized implementation of F-HNNs on a parallel platform, for example

using modern multi-core processors, is immediately feasible. In order to calculate the

next state of the neuron outputs, the most costly operation in the F-HNN algorithm is

the matrix-vector product required to compute the gradient, which is easily

parallelizable. The rest of the computations, including orthogonalization, also fit well in

a parallelization context. As a conclusion, in each iteration all neurons can be updated

SUBMITTED TO ELSEVIER NEUROCOMPUTING

simultaneously, calculating the projection matrix and the updating direction vector at

once. It is worth noting that all neurons must be obtained before moving to the next

iteration, and hence the lower the number of iterations, the faster the system response.

With regards to this metric, again, F-HNNs exhibit the best results, justifying their

interest with regards to HNN parallel implementation.

References

[1] D. Abramson, K Smith, P. Logothetis, and D. Duke, FPGA based implementation

of a Hopfield Neural Network for solving constraint satisfaction problems, in: Proc.

of Euromicro Conference, Vol. 2, (IEEE, Västerås, 1998) 688–693.

[2] C. W. Ahn and R. S. Ramakrishna, QoS provisioning dynamic connection-

admission control for multimedia wireless networks using Hopfield Neural

Networks, IEEE Transactions on Vehicular Technology 53 (2004) 106–117.

[3] S. Aiyer, M. Niranjan and F. Fallside, A theoretical investigation into the

performance of the Hopfield Model, IEEE Transactions on Neural Networks 1

(1990) 204–215.

[4] D. Calabuig, J.F. Monserrat, D. Gomez-Barquero, and O. Lazaro, An efficient

dynamic resource allocation algorithm for packet-switched communication

networks based on Hopfield neural excitation method, Neurocomputing 71 (2008)

3439–3446.

[5] D. Calabuig, J.F. Monserrat, D. Gomez-Barquero, and N. Cardona, A delay-centric

dynamic resource allocation algorithm for wireless communication systems based

on HNN, IEEE Transactions on Vehicular Technology 57 (2008) 3653–3665.

[6] P. Chu, A neural network for solving optimization problems with linear equality

constraints, in: Proc. International Joint Conference on Neural Networks, Vol. II

(IEEE, Baltimore, 1992) 272–277.

[7] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart, Reorthogonalization

and stable algorithms for updating the Gram–Schmidt QR factorization,

Mathematics of Computation 30 (1976) 772–795.

[8] M. Forti, S. Manetti, and M. Marini, A condition for global convergence of a class

of symmetric neural circuits, IEEE Transactions on Circuits and Systems I 39

(1992) 480–483.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

[9] J.J. Hopfield and D. Tank, Neural computation of decisions in optimization

problems, Biological Cybernetics 52 (1985) 141–152.

[10] T.N. Le and C.K. Pham, A new N-parallel updating method of the Hopfield type

neural network for N-queens problem, in: Proc. International Joint Conference on

Neural Networks (IEEE, Montreal, 2005).

[11] K. Smith, M. Palaniswami, and M. Krishnamoorthy, Neural techniques for

combinatorial optimization with applications, IEEE Transactions on Neural

Networks 9 (1998) 1301–1318.

[12] P. M. Talaván and J. Yáñez, A continuous Hopfield network equilibrium points

algorithm, Computers and Operations Research 32 (2005) 2179–2196.

[13] G. V. Wilson and G. S. Pawley, On the stability of the travelling salesman problem

algorithm of Hopfield and Tank, Biological Cybernetics 58 (1988) 63–70.

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Figures

Figure 1. Representation of the subset F inside a hypercube, the typical path followed

by an HNN, and the alternative path that belongs to F .

Figure 2. Flowchart representation of F-HNN

SUBMITTED TO ELSEVIER NEUROCOMPUTING

Figure 3. Average number of iterations of the three P-HNN alternatives

Figure 4. Average simulation time of the three P-HNN alternatives

