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Abstract – Hopfield Neural Networks are well-suited to the fast solution of complex 

optimization problems. Their application to real problems usually requires the 

satisfaction of a set of linear constraints that can be incorporated with an additional 

violation term. Another option proposed in the literature lies in confining the search 

space onto the subspace of constraints in such a way that the neuron outputs always 

satisfy the imposed restrictions. This paper proposes a computationally efficient 

subspace projection method that also includes variable updating step mechanisms. 

Some numerical experiments are used to verify the good performance and fast 

convergence of the new method. 
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I. Introduction 

A Hopfield Neural Network (HNN) is a specific kind of recurrent neural network 

designed for the minimization of an energy function that contains several terms [9]. 

From the Hopfield neuron model, any problem that can be written in terms of a second 

order Lyapunov function can be solved with a quasi-optimal solution using HNNs. 

These neural networks have gained much relevance in the last decade as a good tool to 

solve complex optimization problems mainly thanks to their fast response time. 

Certainly, one of the main advantages of neural techniques is the high computational 

speed obtained through their hardware implementations, which is even more valuable 

when considering their usage for industrial applications. Actually, the use of HNNs has 
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published in Neurocomputing, vol. 73, no. 10, pp. 1794-1800, 2010, DOI:10.1016/j.neucom.2009.12.031. 
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been recently suggested for several time-constrained practical problems due to this 

characteristic – see for example [2], [4], [5]. 

 

However, HNNs have also acquired many detractors because of the poor quality of the 

obtained solutions, mostly when the energy function is non-convex [8]. This condition 

provokes some additional problems related to the convergence to non-desired local 

minima. These problems could be solved by means of a fine tuning of the energy 

function parameters that properly penalizes the non-desired states [4]. In general, a 

mathematical analysis of the borderline cases must be performed in order to derive the 

proper weighting values. However, this problem becomes even more complex in 

practical optimization problems, since reality imposes a set of strict constraints that 

must be taken into account. Consequently, in real problems a set of linear constraints is 

incorporated in the energy function, adding some additional constraint violation terms 

[9]. Despite being a common practice, some authors have demonstrated that the 

inclusion of the violation terms results in more likely invalid solutions [13] and even in 

a change in the network behaviour [3]. The underlying problem that causes these 

convergence problems lies in the fact that the cost terms run contrary to the constraint 

terms and, as a result, the networks converge to local minima far from the absolute 

minimum. 

 

In order to tackle this problem, some authors proposed to confine the HNN to the 

feasible constraint subspace, hence ensuring the final solution validity [6], [11]. Chu [6] 

proposed to project the energy gradient, which indicates the direction of movement, 

modifying the neuron inputs in such a way that the neuron outputs are always in the 

constraint plane. Although this seminal work was the first one bringing forward the 

usage of Projection-based HNNs (P-HNNs), it assumed a continuous-time neural 

network and no reference was made to more realistic computer implementations which 

are inherently discrete in time. The main consequence is that discrete-time 

implementations continuously separate from the feasible subspace due to large 

computational errors when neurons are near the extremes. Moreover, the projection 

matrix was explicitly calculated from the constraints matrix, without considering issues 

of practical relevance such as computational efficiency and numerical robustness. On 

the other hand, Smith et al. [11] defined an iterative mechanism based on the integration 

of the projection of the neuron outputs – instead of projecting the energy gradient – 
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together with an annealing technique for escaping local minima by permitting, in a 

controlled way, increments of the energy function. Comparing this mechanism with [6], 

both use the same calculation method for the projection matrix. However, Smith et al. 

incorporated more effective means to guarantee stability and convergence to feasible 

solutions, but at the expense of extremely increasing the computational burden. 

 

This paper presents a new, computationally efficient subspace projection method that 

includes the variable updating step mechanism proposed by Talaván and Yáñez [12]. 

Once the direction of movement is confined in the subspace of constraints, neuron states 

are modified so that the energy is reduced as much as possible. The proposed method 

performs projections by means of the orthogonalization with respect to an appropriate 

basis of vectors. This basis is dynamically augmented in order to guarantee that the 

modified neuron state vector does not exit the space of allowed solutions. This 

numerical procedure for the projection is computationally efficient. 

 

Concerning the implementation of this Fast HNN (F-HNN), it is worth highlighting 

that, although some authors state that the HNN response could be attained in a few 

microseconds [2], this order of magnitude corresponds with the analogue 

implementation of continuous HNN. Nevertheless, so far the performance of HNN has 

been determined assuming a discrete-time implementation in computers and without 

implementing the analogue circuit. This fact is due to the enormous size of the hardware 

network when considering a high number of neurons and the difficulty of accurately 

implementing the resistor values, which can change network behaviour. In fact, the few 

hardware implementations found in the literature have been developed on digital 

devices, for example [1], in order to reduce the size of the network and solve the 

precision problems in the resistors’ values. However, these implementations lose the 

benefits of the parallel interworking, since they make use of a central processing unit to 

update the neuron outputs sequentially in each iteration. An implementation on a 

computer can exploit the increasing potential of parallelism offered by current processor 

architectures. The proposed F-HNN method retains this inherent capability of 

parallelization so that fast response times can be expected. Even in a sequential 

implementation, the method presents advantages. Some numerical experiments are used 

to verify the performance and fast convergence of the proposed method as compared 

with other P-HNN techniques. 
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II. Mathematical Foundations of the Fast Hopfield Neural Network 

The objective of this section is to describe the main mathematical principles on which 

the F-HNN proposed in this paper is based. With this aim, the classical HNN is firstly 

explained. Next, there is a description of the two main concepts that, jointly used, 

enable the fast convergence of the new neural network: the variable updating step and 

projection of the energy gradient. In Section II.E another possibility that consists in 

executing variable reduction methods before the optimum search is discussed, justifying 

why this option was dismissed. The last part of this section deals with some efficient 

computational methods to reduce the number of operations and numerical errors. 

Section III summarizes the set of steps to be taken in each update of the F-HNN state. 

 

A. Fundamentals of Hopfield Neural Networks 

HNNs can be completely defined with an energy function of the form [9]: 

 ( )( ) ( ) ( ) ( )1
,

2
E t t t t′ ′= − −v v Tv i v  (1) 

where ( )tv  is the x1N  vector of the neuron outputs at time t  with elements 

( ) [ ]0,1iV t ∈ , T  is an xN N  symmetric matrix, i  is an x1N  vector, with elements ijT  

and iI  respectively, of constant parameters that define the neural network, and N  is the 

number of neurons. These parameters should be selected so that the energy minima 

inside the unit hypercube, that is, ( ) [ ]0,1iV t ∈ , are the desired solutions of the 

optimization problem. 

 

Let ( )td  be defined as the x1N  vector of the updating direction at time t . Then, each 

neuron is updated following: 

 ( ) ( ) ( )1 ,i i iV t V t t+ = + ∆  (2) 

 ( )
( ) ( )
( ) ( )

( ) ( )

0, 0, 1,

0, 0, 0,

, otherwise,

i i

i i i

i

d t V t

t d t V t

t d tβ

> =
∆ = < =



 (3) 

where ( ) 0tβ >  is the updating step at time t , and ( )id t  is the i -th element of ( )td . 

The updating step and direction must be selected to make the network converge towards 

a local minimum of the energy. For that reason, the updating direction is typically 
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minus the energy gradient in the bibliography, since it points to the maximum 

decrement of the energy. However, any direction with a negative directional derivative 

decreases the energy too and hence is also a good candidate. The updating step is 

typically constant but, if so, has to be sufficiently small to prevent oscillations. 

Therefore, a lot of iterations are needed until the convergence point is reached. 

 

B. Variable Updating Step 

The Variable Updating Step (VUS) technique was proposed by Talaván and Yáñez [12] 

to increase the convergence speed of the neural network. The idea is to move in the 

direction ( )td  until the energy minimum – in that direction – is reached. The energy 

over direction ( )td  is: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1
,

2
E t t t t t t t tα α α α′ ′+ = − + + − +v d v d T v d i v d  (4) 

 ( ) ( )( ) ( )( ) 2
1 2 ,E t t E t S Sα α α+ = − +v d v  (5) 

 ( ) ( )( )1 ,S t t′= +d Tv i  (6) 

 ( ) ( )2 .S t t′= −d Td  (7) 

Parameter α  is any possible updating step. The energy of (5) is a quadratic function 

with respect to α . Thus, it has a critical point that can be either a maximum or a 

minimum. This critical point is [12]: 

 
( ) ( )( )

0

1
0

2

0 .
dE t t S

d S
α α

α
α

α
=

+
= ⇒ =

v d
 (8) 

It is worth noting that 1S  is minus the directional derivative of the energy over the 

direction ( )td . Therefore, let us assume that 1 0S ≥  and hence that direction ( )td  

points towards points with less energy, that is: 

 ( ) ( )( ) ( )( )0 : ,0 .E t t E tε α α ε α∃ > ∀ < < → + ≤v d v  (9) 

Moreover, 2S  is the second derivative of the energy of (5) with respect to α . Therefore, 

if 2 0S >  then the critical point 0α  is a minimum of (5). Conversely, if 2 0S <  then 0α  

is a maximum. In the first case, the VUS should be 0α  at most, since greater steps will 

not further reduce the energy and could even increase it. In the second case, the VUS 

can be as high as possible, since the energy will continuously decrease in the direction 

( )td . 
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Additionally to the previous paragraph, the VUS must satisfy some other constraints. 

More specifically, the updated neuron outputs must remain in the unit hypercube, that 

is, ( ) ( ) ( ) [ ]0,1
N

t t tβ+ ∈v d . For this aim it is necessary to take into account the 

distances between the current neuron outputs and the extremes 0 and 1. Let us define 

( )tl  as the x1N  vector of limits whose elements are: 

 ( )

( )
( ) ( )

( )
( ) ( )

( )

1
, 0,

, 0,

, 0.

i
i

i

i
i i

i

i

V t
d t

d t

V t
l t d t

d t

d t

 −
>


= − <


∞ =


 (10) 

Then, the VUS is: 

 ( )
( ){ }{ }

( ){ }
0 2

2

min min , , 0,

min , 0.

ii

ii

l t S
t

l t S

α
β

 >
= 
 ≤


 (11) 

 

C. Projection of the energy gradient 

Usually the solution of a specific problem must strictly satisfy certain conditions. 

Examples of these problems are the Travelling Salesman Problem (TSP) [9], the N -

Queens Problem (NQP) [10], and some resources distribution algorithms [2], [5]. In all 

these problems, some neuron subsets can be identified in such a way that the desired 

solution has only one neuron active in each subset. 

 

In this paper, the NQP has been chosen as a case study. The scope of this problem is to 

distribute a set of Q  queens on a Q Q×  chessboard in such a way that no queen could 

attack the others. The HNN proposed to solve this problem has a total of 2Q  neurons. 

The neurons can be organized in a neuron matrix so that if a neuron located at 

coordinates ( ),i j  is active then there is a queen located at these coordinates. Since there 

can be only one queen in each row, any solution to this problem must satisfy the 

requirement that the sum of all neuron outputs of each row is exactly 1. Moreover, there 

can be only one queen in each column. Therefore, the sum of all neuron outputs of each 

column must be exactly 1 too. In general, in many optimization problems, valid 



SUBMITTED TO ELSEVIER NEUROCOMPUTING 

solutions must satisfy some strict constraints that can be written as linear equations, that 

is: 
 =Av b,  (12) 

where A  is an xM N  matrix and b  is an x1M  vector that define M  strict 

constraints. This system defines a subset F  of network states inside the hypercube 

where the M  constraints are satisfied, that is: 

 [ ]{ }: , 0,1 .
N= = ∈v Av b vF  (13) 

Although the initial state ( )0v  belongs to F , the direction of movement – generally 

minus energy gradient – may move the network state away from this subset. Obviously, 

if the problem is well defined, the stable state belongs to F  and thus the network must 

return to it. Figure 1 represents this idea. The typical path is an illustrative neuron 

evolution followed by an HNN. Nevertheless, if the stable state is inside the subset F , 

reaching it could be faster if the search space were reduced to this subset. Alternatively 

to the typical path, a new path could be followed which entirely belongs to F . 

 

Let us define F  as the extension of F  to all ℝN, that is: 

 { }: ,= =v Av bF  (14) 

and let us define 0F  as the set parallel to F  that has the coordinate origin, that is: 

 { }0 : 0 .= =v AvF  (15) 

Then, if the neuron outputs at some time t , ( )tv , belong to F , and the updating 

direction belongs to 0F , then ( )1t + ∈v F  independently of the updating step, since: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 0 .t t t t t t t tβ β β+ = + = + = + =Av A v d Av Ad b b  (16) 

Moreover, if the VUS is selected following the explanation of previous section, then 

( )1t + ∈v F , since the neuron outputs will always belong to the unit hypercube. As 

previously mentioned, other works use the direction of minus energy gradient as the 

updating direction. Then, the path followed by neuron outputs is something similar to 

the typical path depicted in Figure 1. It is also possible to project the energy gradient 

into the set 0F  to define a new updating direction. In this case, the alternative path is 

similar to that of Figure 1. Let us define P  as the projection matrix that projects any 

point onto the set 0F , that is: 
 APv = 0, ∀vvvv∈ℝN, (17) 
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Then the updating direction of the alternative path is: 

 ( ) ( )( ).t t= +d P Tv i  (18) 

This direction satisfies 1 0S ≥  since the angle between ( )td  and the direction of minus 

energy gradient is always less than or equal to 90º, and thus: 

 ( ) ( )( ) ( ) ( )1 cos 0,S t t t t γ= + = +′ ≥d Tv i d Tv i  (19) 

where x  is the norm of x , and γ  is the angle between ( )td  and the direction of 

minus energy gradient. 

 

D. Projections in the hypercube facets 

The main challenge of the projections approach is how to deal with projections in the 

hypercube facets. Inside the facets, at least one neuron is at one of the extremes 0 or 1. 

For instance, if neuron i  is at the extreme ( ) 0iV t =  at some time t , that neuron should 

not be modified if the updating direction is ( ) 0id t < ; see (3). This fact is equivalent to 

changing the updating direction from ( )td  to $ ( )td , where the components of $ ( )td  are: 

 $ ( ) ( ), ,

0, .
j

j

d t j i
d t

j i

≠=  =
 (20) 

Since ( ) 0t =Ad , then $ ( ) 0t ≠Ad  due to the change performed in (20). This fact means 

that the next neuron state will not belong to F . Obviously, neuron outputs must leave 

neither the unit hypercube nor the constraints subspace. Both requirements can be 

accomplished by adding new constraints to matrix A . More specifically, (20) can be 

understood as a new linear constraint of the form $ ( ) 0jd t = . Therefore, it is possible to 

build a matrix B  with all the new constraints. Then, the projection matrix �� is 

computed from the combination of matrices A  and B  so that: 

 	
���
�
 = �, ∀
 ∈ ℝ� . (21) 

Finally, the updating direction is now: 
 ���� = ����
��� + ��. (22) 

Continuing with the previous example, this updating direction not only belongs to 

subset 0F  but, additionally, has its i -th component null. 
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E. Reduction of the dimensionality of the problem 

For an HNN of N  neurons and M  strict constraints, the reader could think that a good 

option could be to reduce the number of variables, that is, to transform the N  neurons 

problem into N M−  instead of projecting the energy gradient in every iteration. This 

type of transformation and the projections have a similar computational cost. The idea 

would be to perform the transformation only once at the beginning of the algorithm, 

hence the expected computational gain. Nevertheless, the problem with this approach is 

that the hypercube becomes a convex polytope in the subspace and it is not easy to 

know whether any of the N M−  new neurons has reached one of the facets. The easiest 

way to confirm this is to undo the transformation, check it, modify neuron outputs if 

necessary – something similar to section II.D – and perform the transformation again. 

This procedure should be done for all iterations and is, obviously, hugely more costly 

than gradient projections. For this reason, this procedure is not recommended. 

 

F. Practical realization of the projection 

Although it has been done so far in other works dealing with projected HNNs, explicitly 

computing the projector matrix, P , for the projection in (18) is not practical because of 

the computational inefficiency and also due to potential difficulties related to numerical 

error. A better approach can be derived from a subspace analysis. The subspace 0F  is 

the null space of matrix A . It is well known that the null space of a matrix is the 

orthogonal complement to the row space of that matrix – the subspace spanned by its 

rows. In this setting, P  is the orthogonal projector onto the null space of A . Orthogonal 

projectors admit a simple representation. Let Q  be an xN M  matrix whose columns 

constitute an orthonormal basis of the row space of A , that is, =′Q Q I  and 

( ) ( )span span= ′Q A . Then, the projector can be written as = − ′P I QQ . With this 

representation, the projection of vector x  can be done with: 

 ( ) .= − = −′ ′Px I QQ x x QQ x  (23) 

That is, first the vector is projected onto the subspace spanned by the columns of Q  (the 

row space of A ), and then this projection is removed from the original vector. This 

procedure is extensively used in many areas of numerical linear algebra and is often 
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referred to as the orthogonalization of a vector with respect to a set of orthonormal 

vectors. 

 

An interesting property of orthogonal projectors is that, in cases of partitioning the 

columns of Q  in two sets, [ ]1 2=Q Q Q , then the projection can be written as: 

 ( )( )2 2 1 1 .′= − − ′Px I Q Q I Q Q x  (24) 

Thus, orthogonalization can be applied first with just a subset of vectors and then the 

final result is obtained after orthogonalizing the previous outcome with respect to the 

rest. Note that the order is irrelevant because ( )( )2 2 1 1
′− ′−I Q Q I Q Q  commute, since 

2 1 0=′Q Q . In the limit, the orthogonalization can be carried out one vector at a time. 

This procedure is known as the Modified Gram-Schmidt, as opposed to the Classical 

Gram-Schmidt procedure of (23). In floating point arithmetic, neither classical nor 

modified Gram-Schmidt procedures guarantee that the resulting vector is orthogonal to 

full machine precision. Therefore, in order to ensure complete numerical robustness, it 

is necessary to use iterative reorthogonalization [7].  

 

In the context of F-HNN, the explicit computation of the projector P  is replaced by the 

initial computation of Q , that is, the orthogonalization of the rows of A . This can be 

done, for instance, by means of Gram-Schmidt procedures for computing the QR matrix 

decomposition. This initial step also has the advantage that it will eventually detect 

redundant constraints, since when the result of an orthogonalization is the zero vector it 

means that the original vector already belonged to the subspace. On the other hand, the 

property of (24) allows additional constraints to be dynamically included as necessary. 

This is essential for adding new constraints as explained in section II.D. 

 

III. Different Alternatives for Projection Hopfield Neural Networks 

A. Fast HNN (F-HNN) 

This is the P-HNN proposed in this paper, which can be summarized as follows: 

• Step 1: Initialize matrix A  and derive Q . Define a random vector ( )tv  for 

0t = , so that ( )0 =Av b . 

• Step 2: Calculate the energy gradient as ( )E t∇ = − −Tv i . 

• Step 3:  
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1. Obtain the updating direction as ( )t E E′= −∇ + ∇d QQ . 

2. Check that all neurons will be confined in the hypercube (see the 

procedure described in section II.D).  

3. If all neurons are confined, go to Step 5. Otherwise, go to Step 4. 

• Step 4: While there is any neuron not confined in the hypercube: 

1. Add new constraints to A  and derive the new columns of Q , 2Q . 

2. Update ( ) ( ) ( )2 2t t t′← −d d Q Q d . 

3. [ ]2=Q Q Q . 

• Step 5: Calculate 1S , 2S , ( )tl , and ( )tβ  following the reasoning described in 

Section II.B – Equations (6), (7), (10), and (11), respectively. 

• Step 6: Update neuron states as ( ) ( ) ( ) ( )1t t t tβ+ = +v v d . 

• Step 7: 1t t← + . Go to Step 2 until the termination criterion is met. 

 

All of this procedure is shown in Figure 2. 

 

B. HNN with Gradient Projections (GP-HNN) 

As described in the introduction, Chu [6] proposed the projection of the energy gradient 

considering a continuous HNN. However, Chu did not take into account all the 

implications brought by the discrete-time implementation of his proposal. 

 

The GP-HNN method is the discrete counterpart of [6] and can be understood as a 

simplification of the F-HNN method, since no VUS technique is used. Rather, a fixed 

time step has been assumed, t∆ . Therefore, the GP-HNN procedure is almost the same 

as F-HNN except that Step 5 is removed and ( )t tβ = ∆ . Obviously, t∆  must be 

carefully selected to guarantee the fast convergence to the minimum of the energy. 

 

C. Smith HNN (S-HNN) 

The proposal of Smith et al. [11] can be summarized in the following steps: 

• Step 1: Initialize matrix A  and derive Q . Define a random vector ( )tv  for 

0t = , so that ( ) [ ]0 0,1
N∈v . Obtain ( ) 1

' '
−=s A AA b  and initialize 1U =  and 

1L = . 

• Step 2: Calculate the energy gradient as ( )E t∇ = − −Tv i . 
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• Step 3: Update ( ) 1 2 tk t e τ−= −  and generate a random( ) ( ),1t k tα ∈    . 

• Step 4: Calculate ( ) ( )t t t Eα= − ∆ ⋅ ∇x v . 

• Step 5: Perform the projection and clipping procedure according to the following 

steps: 

1. Find the projection of x  onto the constraint subspace: p ′= − +x x QQ x s . 

2. Introduce px  inside the unit hypercube, modifying all its elements as 

follows: 

 

,

,

,

p
i

p p
i i

p
i

U x U

x L x L

x L
otherwise

U L


≥


= ≤

 −
 −

 

3. p=x x  and = −e Ax b . If , 1 ,ie tol i N< ∀ = L  go to Step 6. Otherwise, 

go to Step 5.1. 

• Step 6: Update neuron states as ( )1t + =v x  and also update 0U U ε← −  and 

0L L ε← +  according to the periodicity described in [11]. 

• Step 7: 1t t← + . Repeat from Step 2 until ( ) 1k t =  and 0idv dt=  for all i . 

Comparing this procedure and the one proposed in [11], it can be noticed that in Step 5 

the Gram-Schmidt procedure has been used instead of the direct projection, according to 

the explanation given in Section II.F. This has been made in order to increase the 

efficiency of the procedure and allow a fair comparison between the three alternatives. 

It is also important to highlight that, by means of Step 3 and Step 4, an annealing-like 

procedure is implemented allowing punctual increments of the energy function. This 

mechanism was devised by Smith et al. to avoid local minima and increase the 

convergence probability. Step 5 is a projection and clipping procedure that converges to 

a point inside the unit hypercube and the constraints subspace. Updating U  and L  as 

shown in Step 6 makes the clipping more severe with each new iteration, hence forcing 

the neural network to converge. 

 

In this paper, the same constant parameters defined in [11] are employed, namely, 
410t −∆ = , 5

0 10ε −= , and 40τ = . The value of t∆  is the same as that used in GP-HNN.  
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IV. Convergence of F-HNNs 

The main characteristic of HNNs is that they always converge. Nevertheless, 

projections and VUSs may change the good behaviour of HNNs. In order to prove the 

convergence of F-HNNs, it is worth highlighting two characteristics that F-HNNs share 

with HNNs: 

• The energy function is a quadratic function defined inside the unit hypercube. 

Thus, it is upper and lower bounded inside the hypercube. 

• From (19), the direction of minus the projection of the energy gradient points to 

neuron states with less energy. Moreover, the computation of the VUS ensures 

that the minimum in that direction is never exceeded. Consequently, the energy 

will be always reduced from one iteration to the next. 
 

Therefore, F-HNNs must always converge to a point since the energy cannot be reduced 

unlimitedly. Finite precision calculus in computers may produce round-off errors 

preventing convergence when the network is very close to a minimum and neuron states 

change less than the round-off error. This can be solved with a tolerance value greater 

than the round-off error. This way, if neurons vary less than the tolerance, the network 

is assumed to converge. In this paper the tolerance, tol , is set to 10–4 for all algorithms. 

 

V. Numerical Results and Discussion 

This section compares different approaches using the NQP. As previously mentioned, 

for the NQP, neurons are usually organized in a matrix form. Nevertheless this does not 

invalidate the vector notation of previous sections. In fact, the matrix form aims only at 

making writing and understanding the different terms of the energy function easy. 

Therefore, it is important to remember that, although some equations of this section use 

two indices to refer to a specific neuron output, the set of all neurons will still be 

grouped into the column vector ( )tv  just as in previous sections. 

 

The objective of the NQP is to distribute Q  queens into a Q Q×  chessboard in such a 

way that they could not attack each other. The energy function used to solve this 

problem is [10]: 
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( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1 1 1 1

, ,
1 1 1 1 1 1

1 1
0 0

1 1
2 2

.
2 2

Q Q Q Q

ij ij
i j j i

Q Q Q Q Q Q

ij i k j k ij i k j k
j i i k N j i i k N

j k N j k N
k k

A A
E t V t V t

B B
V t V t V t V t
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The first term aims at allowing only one active neuron per column and, hence, only one 

queen in each column of the chessboard. Similarly, the second term tries to force only 

one neuron to be active in each row. The last two terms are focused on the diagonals of 

the chessboard. Whereas rows and columns must have exactly one queen each, 

diagonals can have one or zero queens. These terms are minimized in those situations. 

 

The three approaches described in section III are studied in this section. The 

performance of all approaches was tested in terms of the number of iterations needed to 

reach equilibrium, the probability of reaching a good solution, and computational cost. 

These performance indicators were obtained using computer simulations for different 

numbers of queens. More specifically, 5000 different initial states were used for each 

quantity of queens ranging from 4Q =  to 16Q = . 

 

Figure 3 shows the average number of iterations until an equilibrium state is reached. 

The differences between the algorithms are noteworthy. GP-HNN needs 10 times fewer 

iterations than S-HNN, whereas F-HNN needs 10 times fewer than GP-HNN and 100 

times fewer than S-HNN. The good performance of F-HNN highlights the benefit of 

using a VUS. The high number of iterations of S-HNN is mainly due to the Simulated 

Annealing (SA) procedure since the system must be slowly “cooled”. 

 

The probability of reaching a good solution of the NQP is very similar for all the 

approaches. Specifically, S-HNN reached a good solution 52.7% of the time, GP-HNN 

reached one 56.0% of the time, and F-HNN did so 54.0% of the time. These values are 

also the probabilities of reaching the global optimum. The energy function of (25) has 

been defined to be minimum for the valid/good solutions. Other stable states always 

have more energy. Therefore, the three techniques have very similar behaviours in terms 

of reaching the global optimum. It is worth noting that S-HNN has the worst behaviour 

in spite of using an SA procedure. This is due to two main causes. First, the SA 
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procedure is not as good as it may seem initially. The “cooling” procedure needs too 

many iterations to converge with respect to the improvement in the probability of good 

solutions. Second, the mechanism of projection and clipping used by S-HNN for 

confining the neuron states into the constraints subspace produces severe instabilities. 

Although this procedure converges to a point, this point may be very different in two 

contiguous HNN iterations. For that reason the clipping is more and more severe with 

every new iteration, which forces the neural network to converge. The main problem of 

this procedure is that the convergence may be forced even if the neuron states are far 

from a good solution. 

 

Finally, Figure 4 depicts some illustrative results of the computational cost of all the 

approaches. The three techniques were simulated on the same computer, an Intel Core 2 

Duo processor T7500 working at 2.2 GHz and with 4 GB of physical RAM, using a 

prototype in MATLAB. As can be observed, S-HNN improves its performance with 

respect to Figure 3 and gets very close to GP-HNN. Therefore, although S-HNN needs 

many more iterations to converge, each iteration can be solved faster. Nevertheless, this 

fact does not suffice for S-HNN to be the best approach. F-HNN still has the best 

behaviour, reducing the time needed more than tenfold in comparison to the other 

techniques. Although this study was performed for the specific case of the NQP, it is not 

difficult to understand that F-HNNs maintain their good performance in other 

applications. Comparing GP-HNNs and F-HNNs, the main difference is the use of 

VUS. The faster response time of HNNs using VUS was proved in [12] and hence it is 

clear that F-HNNs will always outperform GP-HNNs. Regarding S-HNNs, the 

difference is how they project over the subspace and ensure that all neurons remain 

inside the unit hypercube. S-HNNs perform the projection and clipping procedure of 

Step 5 (described in Section III.C) iteratively, whereas F-HNNs use the 

orthogonalization explained in Section II.F. It is not easy to know which technique is 

faster, although for the NQP the fact that F-HNNs outperform S-HNNs is completely 

clear. Moreover, the projection and clipping procedure needs the selection of a tolerance 

which is not trivial and makes the method of orthogonalization more robust since it does 

not need any additional parameters. 
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VI. Conclusions 

This paper has analysed two well-known alternatives for incorporating the strict 

satisfaction of linear constraints into Hopfield Neural Networks (HNNs) through the 

usage of subspace projections: the HNN with Gradient Projections (GP-HNN) and the 

Smith HNN (S-HNN). Both models have been optimized in their execution time by 

using more efficient projection methods. Moreover, a new P-HNN model has been 

proposed, called Fast HNN (F-HNN), that combines the efficient projection of the 

energy gradient with a variable updating step technique. Once the direction of 

movement is confined in the subspace of constraints, neuron states are modified so that 

the energy is reduced as much as possible. The joint usage of both concepts allows a 

faster convergence of the new neural network, reducing the required number of 

iterations significantly. 

 

The advantages of F-HNN have been proven through a direct comparison with the other 

two proposals. The N Queens Problem has been chosen as a case study because this is a 

classic optimization problem and, besides, it has been widely used in the field of HNN. 

First, the numerical experiments have revealed that F-HNN needs far fewer iterations to 

reach the equilibrium state than the other two alternatives. Obviously this fact is 

motivated by the usage of the variable updating step, which is especially efficient once 

the energy gradient is projected to the constraint subspace. Aside from converging in 

fewer iterations, the probability of reaching a valid solution is kept almost identical 

compared with S-HNN and GP-HNN. In addition, it has been shown that F-HNN 

requires less computational time. With a conventional personal computer, the F-HNN 

model was able to solve the 16 Queens problem in less than four seconds, being up to 

twenty times quicker than the other two proposals. 

 

Thanks to the mathematical foundations derived in this paper, and as a future work, the 

design of an optimized implementation of F-HNNs on a parallel platform, for example 

using modern multi-core processors, is immediately feasible. In order to calculate the 

next state of the neuron outputs, the most costly operation in the F-HNN algorithm is 

the matrix-vector product required to compute the gradient, which is easily 

parallelizable. The rest of the computations, including orthogonalization, also fit well in 

a parallelization context. As a conclusion, in each iteration all neurons can be updated 
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simultaneously, calculating the projection matrix and the updating direction vector at 

once. It is worth noting that all neurons must be obtained before moving to the next 

iteration, and hence the lower the number of iterations, the faster the system response. 

With regards to this metric, again, F-HNNs exhibit the best results, justifying their 

interest with regards to HNN parallel implementation. 
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Figures 

 

 

Figure 1. Representation of the subset F  inside a hypercube, the typical path followed 

by an HNN, and the alternative path that belongs to F . 

 

 

Figure 2. Flowchart representation of F-HNN 
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Figure 3. Average number of iterations of the three P-HNN alternatives 

 

 

Figure 4. Average simulation time of the three P-HNN alternatives 

 

 


