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Hopfield neural networks (HNNs) have proven useful in solving opti-
mization problems that require fast response times. However, the original
analog model has an extremely high implementation complexity, mak-
ing discrete implementations more suitable. Previous work has studied
the convergence of discrete-time and quantized-neuron models but has
limited the analysis to either two-state neurons or serial operation mode.
Nevertheless, two-state neurons have poor performance, and serial op-
eration modes lose fast convergence, which is characteristic of analog
HNNs. This letter is the first in the field analyzing the convergence and
stability of quantized Hopfield networks (QHNs)—with more than two
states—operating in fully parallel mode. Moreover, this letter presents
some further analysis on the energy minimization of this type of net-
work. The main conclusion drawn is that QHNs operating in fully par-
allel mode always converge to a stable state or a cycle of length two and
any stable state is a local minimum of the energy.

1 Introduction

The main feature of iterative algorithms is that new solutions are obtained
from the result of a previous computation, and with each update, the
solution approaches closer to the final optimum. This behavior is useful
in minimization problems where algorithms are continuously approach-
ing the minimum. Algorithms like Newton’s or steepest descent (Moon &
Stirling, 2000) have proven their good performance in finding the minimum
of functions in R

N.
Hopfield proposed the use of recurrent neural networks for solving op-

timization problems via the minimization of an energy function (Hopfield
& Tank, 1985). From a hardware point of view, the Hopfield neural network
(HNN) is an analog network composed of several operational amplifiers
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interconnected by resistors (Hopfield, 1984). Each neuron output is bounded
between a maximum and a minimum value, which reduces the search space
to an N-dimensional hypercube. Neurons are considered active or inactive
if their outputs exceed a threshold or not. The stability of this kind of net-
work is guaranteed when the energy function is described as a Lyapunov
function (Haykin, 1999).

Starting from Hopfield’s work, HNNs have been successfully employed
in several practical problems due to their fast convergence (see examples
in Lázaro & Girma, 2000, and Ahn & Ramakrishna, 2004), although many
more can be found in the literature—a direct consequence of neuron parallel
interworking. In these applications, HNNs can replace other heuristics with
worse performance whose use is motivated only by the need of a fast
response time.

1.1 Quantized Hopfield Networks. The dynamics of the discrete-time
and quantized-neuron model, also known as quantized Hopfield networks
(QHNs), is, in general, different from that of the continuous-neuron model
(Bousoño-Calzón & Salcedo-Sanz, 2004). Although the original HNN is a
hardware model using analog circuits, the enormous size of the hardware
network with a large number of neurons and the difficulty of accurately im-
plementing the resistor values, which can change network behavior, have
made QHNs implemented over digital devices, like field-programmable
gate arrays (FPGAs), the best HNN implementation option. Therefore,
QHNs are used in computer simulations and, most of all, in realistic hard-
ware implementations of HNNs, since quantization can be conveniently
adjusted to the hardware limits of the digital device. When reducing the
quantization step, QHNs tend to the digital implementation of continuous
HNNs (CHNs). Section 2 presents a comparison of QHNs and CHNs. First,
let us formally define QHNs.

Let Q be a QHN of N neurons uniquely defined by (T, i) where T = [Ti j ]
is an N × N symmetric matrix and i = [Ii ] is a vector of N elements,1 where
N is the number of neurons. The network state at iteration t is defined by the
neuron outputs v(t) = [Vi (t)] that are updated by �i (t), that is, Vi (t + 1) =
Vi (t) + �i (t). Neuron outputs are quantized over the interval [0, 1] by steps
of � = 1/p; thus, Vi (t) ∈ S, where S ≡ {0,�, 2�, . . . , p�} is the set of all
possible states of a neuron of Q. An energy function defined as

E(t) = −1
2

vT (t)Tv(t) − vT (t)i (1.1)

1Further details on the physical meaning of the HNN parameters can be found in
Hopfield (1984).
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is associated with each QHN Q. If neuron i is updated at iteration t, then

�i (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−�,
∂ E
∂Vi

(t) > 0, Vi (t) > 0,

�,
∂ E
∂Vi

(t) < 0, Vi (t) < 1,

0, otherwise,

(1.2)

∂ E
∂Vi

(t) =−
N∑

j=1

Ti j Vj (t) − Ii , (1.3)

and �i (t) = 0 if the neuron is not updated. Depending on how neurons
are updated, several modes of operation have been identified (Bruck &
Goodman, 1988). Q operates in a serial mode if one neuron is updated at
each iteration t, in a parallel mode if n < N neurons are updated, or in fully
parallel mode if all N neurons are updated each iteration.

1.2 State of the Art on Convergence and Stability of QHNs. In Bruck
and Goodman (1988), the behavior of binary Hopfield networks (BHNs)
was studied: two-state neurons with p = 1, operating in serial and fully
parallel modes. The main conclusions were that BHNs operating in serial
mode always converge to a stable state if the elements of the diagonal of T
are nonnegative and that BHNs operating in fully parallel mode converge to
a stable state or to a cycle of length two, that is, BHN oscillates between two
states, independent of T. Moreover, Bruck and Goodman demonstrated that
the energy is a monotonically decreasing function in the serial-operation
mode, obviously with a nonnegative diagonal in T. These conclusions have
important implications. First, the fact that BHN stability is guaranteed when
operating in serial mode solves one of the main drawbacks of CHNs, which
were criticized precisely because of their problems of instability (Wilson &
Pawley, 1988; Forti, Manetti, & Marini, 1992). Second, the final conclusion
of Bruck and Goodman entails that BHNs in serial-operation mode evolve
toward a local minimum of the energy function. Therefore, they exhibit
the same ability as CHNs for solving optimization problems with a cost
function to be minimized, which is the end purpose of these mathematical
tools. However, this conclusion is valid only for the serial-operation mode
that entails a significant deterioration of the system response time, since
only one neuron is updated per iteration.

Two-state neurons are a simplification of the continuous-neuron model
and assume that neurons can take only two values in their evolution. Hop-
field (1984) proposed these for solving convergence problems that he de-
tected in his original model. Nevertheless, the use of BHNs has severe
consequences, as shown in Calabuig, Monserrat, Gómez-Barquero, and
Lázaro (2006), and their outcomes are very poor compared with CHNs
(Joya, Atencia, & Sandoval, 2002). When CHNs and QHNs are compared,
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the performance of a QHN depends on the shape of the energy function,
the number of neurons, and the value of p. Obviously, with a greater p,
QHNs are more similar to CHNs. For these reasons, QHNs with p > 1 are
preferable, although high values of p require greater response times.

The generalization of BHNs to QHNs was originally proposed by
Matsuda (1999a), and many others have used them since then (Bousoño-
Calzón & Salcedo-Sanz, 2004; Matsuda, 1999b). The QHNs proposed by
Matsuda operate in serial mode. Considering this mode of operation, Mat-
suda (1999a) demonstrated the convergence of QHNs to a local minimum of
the energy, which reinforces the same statement made in Bruck and Good-
man (1988) for BHNs. Moreover, using a modified dynamics, not exactly
the one shown in equation 1.2, the convergence to a minimum was ensured
independent of the diagonal of T.

1.3 Objectives of This Work. Although this letter does not focus on
demonstrating the good performance of QHNs, since this issue has al-
ready been addressed in Calabuig et al. (2006) and Joya et al. (2002), this
letter demonstrates, in section 2, the power of QHNs operating in fully
parallel mode. Our main goal is to prove that this type of network can be
implemented in a way such that it is fast and stable. With this aim, this
letter extends the work of Bruck and Goodman (1988) and Matsuda (1999a)
and analyzes the convergence and stability of QHNs with p > 1 and fully
parallel operation mode. Section 3 demonstrates that this type of network
converges to a stable state or to a cycle of length two. Although the en-
ergy can increase from one iteration to the next, section 4 shows that if the
network converges, it does so toward a local minimum.

2 Advantages of QHNs Operating in Fully Parallel Mode

One of the main drawbacks of the serial-operation mode is that it loses the
fast convergence of HNNs, characterized by the parallel and simultane-
ous evolution of neurons, making serial operation useless for applications
requiring fast response times.

Another drawback is that the convergence to a stable state is ensured
only if the elements of the diagonal of T are nonnegative, which is not
always true. If this condition is not satisfied, then the QHN may con-
verge to cycles of unknown length, which makes the detection and exit
from these cycles practically impossible. Matsuda (1999a) tried to solve
this by slightly modifying the updating criteria of equation 1.2. Never-
theless, this approach was never compared with a fully parallel operation
mode.

Another solution is to force zeros in the diagonal. HNNs are usually
used in optimization problems that can be described with a set of binary
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variables.2 In fact, the use of binary variables represented by neurons is a
common practice in the application of HNNs to engineering problems (see
the examples in Hopfield & Tank, 1985; Lázaro & Girma, 2000; Calabuig,
Monserrat, Gómez-Barquero, & Cardona, 2008). Therefore, the desired so-
lutions are at the hypercube corners, since only the corners have a physical
meaning in the original problem. At the hypercube corners, Vi = 0 or Vi = 1
and, consequently, V2

i = Vi . Thus, the quadratic term Tii can be integrated
in the linear term Ii without changing the energy value at the corners. More-
over, the corner with minimum energy remains the same. Therefore, with a
simple modification of the energy function, the elements of the diagonal of
T can be forced to be equal to zero. Nevertheless, this is not always a good
option. Although the energy at the corners is not changed, the shape of the
energy function inside the hypercube changes drastically and may produce
incorrect outcomes.

This section compares these two serial approaches, Matsuda’s proposal
(SQHN-Mat) and zero forcing (SQHN), with the fully parallel operation
mode (PQHN) and CHNs. For this analysis, the energy function defined
in Le and Pham (2005) for the M-queens problem (MQP) was used (see
the appendix for further details about the simulations). In this case, all the
elements of the diagonal of T are negative. All results depicted in Figures 1
and 2 are averaged over 1000 independent simulations with different initial
states. Figure 1 shows the performance of the four approaches for an in-
creasing number of queens. The CHN always has less energy than the other
three approaches, as shown in Figure 1a. The other QHNs use 64 neuron
states, that is, p = 63.

For the SQHN, the diagonal was cancelled to guarantee its convergence.
In spite of having the same energy values at the corners as PQHN, the
change of the energy shape affects drastically the convergence of SQHNs.
Indeed, results prove that SQHN is far from the optimum.

Following from the previous example, the results of Figure 1b demon-
strate that PQHNs need significantly fewer iterations to converge than the
other three approaches. The time to converge is more than one order of
magnitude below that of CHNs and more than two for many queens with
respect to SQHN-Mat. Nevertheless, theorem 1 will prove that PQHNs may
converge to a stable state or a cycle of length two, whereas the other three
approaches always converge to a stable state. This convergence to cycles
slightly increases the average energy with respect to CHN and SQHN-Mat,
as shown in Figure 1a.

In order to have a measurement more suitable for comparing the per-
formance of the four approaches, Figure 1c depicts the average number

2Although variables in the original problem are binary, neurons characterizing those
variables should have more than two states to improve the outcomes.
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Figure 1: Performance for different numbers of queens.
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Figure 2: Performance for different numbers of neuron states.
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of iterations until a good solution is reached or, in other words, until the
network converges to a valid solution of the problem. After a network ends
its evolution, on detecting a stable state or a cycle of length two, neuron
outputs are rounded to the extremes, 0 or 1. If that state is not a valid
solution of the MQP, the algorithms are run again with a different initial
state. The results of Figure 1c show the total number of iterations needed
to reach a good solution. This figure shows that the PQHN has the best
behavior, improving the CHN and SQHN-Mat by a factor similar to that of
Figure 1b. This means that despite the average energy being slightly higher,
the final states of the PQHN, even after detecting a cycle,3 are not far from
a good solution, and rounding solves the problem in many cases. In fact,
the probability of reaching valid solutions is very similar for the PQHN
and SQHN-Mat, which is 45.7%, and 45.8%, respectively. CHNs reach good
solutions 49.0% of the time, which is only slightly higher. Nevertheless,
SQHNs could not converge to a valid solution in any of the trials. This is
due to the change performed in the diagonal of T.

Finally, the behavior of PQHNs relies completely on the number of states.
Figure 2 compares different numbers of states for the 12-queens case. SQHN
is barely affected by the number of states in terms of average energy—
because of the modification of the diagonal of T—whereas PQHN and
SQHN-Mat require a certain number of states to show good performance.
This figure also demonstrates why BHNs are not a good option, since a
QHN’s performance worsens for such a low number of states. The average
number of iterations required to reach a good solution is also depicted in
Figure 2c. This figure shows that at its best, SQHN-Mat needs many more
iterations than PQHN.

To sum up, this section has demonstrated, with a simple example, the
advantages of QHNs operating in fully parallel mode. They present good,
fast convergence behavior compared with CHNs and SQHN-Mat and much
better performance than SQHNs. The rest of the letter studies the conver-
gence and stability of PQHNs.

3 Convergence and Stablity

Bruck and Goodman (1988) proved that BHNs operating in a fully parallel
mode converge to a stable state or a cycle of length two. The following
theorem shows that any QHN with p > 1 can be reformulated in the form
of a BHN; hence, the same conclusion remains valid.

Theorem 1. Let Q ≡ (T , i) be a QHN with p > 1 and N neurons and v(t) the
neuron outputs at iteration t. Let S ≡ {sn = n� : n = 0, . . . , p} and Ŝ ≡ {0, 1}.

3Note that PQHN may converge to cycles. In that case, the final state is one of the two
states of the cycle.
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Then there exists a BHN Q̂ ≡ (T̂ , î) of N̂ neurons and an injective function

F : SN → Ŝ
N̂

so that F (v(t)) = v̂(t) ∀t if F (v(0)) = v̂(0).

Proof. In order to prove the theorem, at least one specific BHN Q̂ and a
function F satisfying the above conditions must be found.

First, consider the following transformation. Divide each neuron of Q
into p ordered binary neurons in such a way that if the original neuron is
in state sn, the first n binary neurons are in state 1 and the rest in state 0.
For example, if p = 4, the original neurons can be in any of the following
states S ≡ {0, 0.25, 0.5, 0.75, 1}. Now each neuron is divided into four binary
neurons, and their states are selected according to this rule: 0 ↔ [0 0 0 0],
0.25 ↔ [1 0 0 0], 0.5 ↔ [1 1 0 0], 0.75 ↔ [1 1 1 0], and 1 ↔ [1 1 1 1].
Assume this transformation is the injective function F.

Since each neuron is divided into p binary neurons, the BHN Q̂ has
N̂ = pN neurons. In order to simplify the nomenclature in this proof and
as a direct consequence of this transformation, rewrite Q̂ as a 2D-BHN,
Q∗ = (T∗, i∗), with N × p neurons, where the p neurons of row i are related
to the ith neuron of Q. It is worth noting that 2D-HNNs do not differ
from HNNs; they are just a way to order the neurons and group them
according to their specific meaning. Therefore, if the initial states are the
same, F (v(0)) = v∗(0), and the dynamics of Q and Q∗ are equivalent, then
F (v(t)) = v∗(t), ∀t. Thus, if at iteration t, the ith neuron of Q increases, then
the first neuron at state 0 of the ith row of Q∗ must change to state 1. Also,
if the ith neuron of Q decreases, the last neuron at state 1 of the ith row of
Q∗ must change to state 0. Consider the following dynamics:

∂ E∗

∂V∗
i j

(t) = A(1 − V∗
i j−1(t) − V∗

i j+1(t)) + ∂ E
∂Vi

(t), (3.1)

V∗
i0(t) = 1, V∗

i p+1(t) = 0, (3.2)

A> max
k

(
N∑

l=1

|Tkl | + |Ik |
)

, (3.3)

where E∗ is the energy function of Q∗ and V∗
i j is the neuron in the ith

row and jth column of Q∗. The neurons (i, 0) and (i, p + 1) do not exist,
and consequently, V∗

i0(t) and V∗
i p+1(t) are defined in equation 3.2. Moreover,

A is a positive constant greater than the absolute value of any ∂ E/∂Vi (t).
From equation 3.1, if both V∗

i j−1(t) and V∗
i j+1(t) are in state 1, the energy

gradient of the neuron (i, j) is negative, and, according to equation 1.2,
V∗

i j (t + 1) = 1. Similarly, if both V∗
i j−1(t) and V∗

i j+1(t) are in state 0, the en-
ergy gradient of the neuron (i, j) is positive, and in the next iteration,
V∗

i j (t + 1) = 0. If V∗
i j−1(t) = 1 and V∗

i j+1(t) = 0, then the energy gradient of
the neuron (i, j) is exactly the energy gradient of the ith neuron of Q,
∂ E/∂Vi (t). If ∂ E/∂Vi (t) < 0, then Vi (t) increases in the next iteration. This
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fact is completely reflected in the ith row of the 2D-BHN since the first
neuron in state 0 will change to state 1. Similarly, if ∂ E/∂Vi (t) > 0, then Vi (t)
decreases, and the last neuron of the ith row of the 2D-BHN in state 1 will
change to state 0.

The pair (T∗, i∗) can be obtained by comparing equations 1.3 and 3.1.
They are

T∗
i j,kl =

{
Tik� + A, i = k, j = l − 1, l + 1,

Tik�, otherwise,
(3.4)

I ∗
i j =

{
Ii , j = 1,

Ii − A, otherwise.
(3.5)

Finally, from equations 3.4 and 3.5, T̂ and î are

T̂i j =
{

Tkl� + A, k = l, i = j − 1, j + 1,

Tkl�, otherwise,
(3.6)

Îi =
{

Ik, i = p(k − 1) + 1,

Ik − A, otherwise.
(3.7)

k =
⌈

i
p

⌉
, l =

⌈
j
p

⌉
, (3.8)

where 	x
 is the ceiling function, that is, the function that returns the small-
est integer not less than x. Note that the neurons of the ith row of Q∗

correspond to the neurons p(i − 1) + 1 to pi of Q̂.
As a result, the BHN Q̂ defined in equations 3.6 and 3.7 and obtained

from the original QHN Q satisfies theorem 1.

Consequently, and from Bruck and Goodman (1988), if v(t) = v(t − 1),
then it can be concluded that the QHN has reached equilibrium. On the
other hand, if v(t) �= v(t − 1) and v(t) = v(t − 2), the QHN is oscillating
between v(t) and v(t − 1).

4 Minimization of the Energy Function

Section 3 showed that any QHN operating in a fully parallel mode reaches
a stable state or a cycle of length two. Cycles are not as problematic as they
may seem, as shown in section 2. The biggest problem is that QHNs do not
always reduce the energy from one iteration to the next. Therefore, although
QHNs reach a stable state, the energy at that state could be greater than the
energy at the initial state, since a stable state is always a local minimum of
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the energy but not necessarily the absolute one. This section proves that the
energy at any stable state is always less than the energy of the initial state
that led to it.

First, the next theorem reveals what happens in the QHN evolution when
the energy increases:

Theorem 2. Let Q ≡ (T , i) be a QHN. If the energy increases from iteration t to
iteration t + 1, at least one component of the energy gradient changes sign:

If �E > 0 → ∃i, sign
(

∂ E
∂Vi

(t)
)

= −sign
(

∂ E
∂Vi

(t + 1)
)

, (4.1)

�E = E(t + 1) − E(t). (4.2)

Proof. The increment of the energy is

�E = 1
2

vT (t)Tv(t) + vT (t)i − 1
2

vT (t + 1)Tv(t + 1) − vT (t + 1)i

= 1
2

N∑
i=1

�i (t)
(

∂ E
∂Vi

(t) + ∂ E
∂Vi

(t + 1)
)

. (4.3)

If �E > 0, then at least one term of the summation of equation 4.3 must
be positive. If the ith term is positive, then

If �i (t) ≷ 0 → ∂ E
∂Vi

(t) ≶ 0 → ∂ E
∂Vi

(t + 1) ≷ 0. (4.4)

Thus, from equation 4.4, the energy gradient of neuron i changes sign.

Some additional conclusions can be drawn from analysis of the proof of
theorem 2. From equation 4.3, some neurons can be identified as guilty of
the energy increase. As it has been proven, all components of the energy
gradient that correspond to the guilty neurons change sign. Thus, the QHN
tends to correct the cause of the energy increment since for those neurons,
�i (t) + �i (t + 1) = 0 (recall equation 1.2). This relevant result hints that the
QHN has a good evolution despite sporadic increments of the energy. The
following theorem states formally this fact:

Theorem 3. Let Q ≡ (T , i) be a QHN. Then if Q reaches a stable state, the energy
at this state is less than or equal to the energy of any previous state.

Proof. Let us define te as the iteration where Q reaches the stable state,
that is, �i (te ) = 0 ∀i , and ta < te as any previous iteration. Similarly to
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equation 4.3, the increment of the energy from ta to te is

E(te ) − E(ta ) = 1
2

te −1∑
t=ta

N∑
i=1

�i (t)
(

∂ E
∂Vi

(t) + ∂ E
∂Vi

(t + 1)
)

= 1
2

N∑
i=1

[
�i (ta )

∂ E
∂Vi

(ta ) +
te −1∑

t=ta +1

(�i (t − 1) + �i (t))
∂ E
∂Vi

(t)

+�i (te − 1)
∂ E
∂Vi

(te )

]
. (4.5)

Therefore, the energy increment can be divided into N terms—one per
neuron. Each term is further split into products of neuron variations and
energy gradients. Now this proof will focus on each one of these products
to show that all of them are nonpositive, which proves the validity of the
theorem.

The first product, �i (ta )∂ E/∂Vi (ta ), is always nonpositive due to equa-
tion 1.2. For the last product, �i (te − 1)∂ E/∂Vi (te ), two different cases can
be identified. The first case is when the equilibrium is reached provided
that ∂ E/∂Vi (te ) = 0 or �i (te − 1) = 0. Then the last product is, obviously,
nonpositive. If ∂ E/∂Vi (te ) �= 0, that means that the ith neuron is at one
of the hypercube extremes, that is, Vi (te ) = 0 or Vi (te ) = 1. Moreover, if
�i (te − 1) �= 0, the ith neuron has reached the extreme exactly at itera-
tion te. Then Vi (te − 1) = (p − 1)� and �i (te − 1) = �, or Vi (te − 1) = � and
�i (te − 1) = −�. In both cases, �i (te − 1) and ∂ E/∂Vi (te ) must have opposite
signs; if not, �i (te ) = −�i (te − 1), and Q would not be at the stable state.

For the rest of products, three different cases must be studied. The first
case is when �i (t − 1) and �i (t) have the same sign, or �i (t − 1) = 0; the
second is when �i (t − 1) and �i (t) have different signs—hence, their sum
is zero; and the third is when �i (t) = 0. Since �i (t) and ∂ E/∂Vi (t) have op-
posite signs, all the products of the first case are nonpositive. For the second
case, �i (t − 1) + �i (t) = 0, and thus these products are also nonpositive. Fi-
nally, for the last case, if �i (t) = 0 because ∂ E/∂Vi (t) = 0, then the products
are nonpositive. Second, if ∂ E/∂Vi (t) �= 0, then the ith neuron is at one of
the extremes at iteration t; and �i (t − 1) and ∂ E/∂Vi (t) must have opposite
signs; if not, �i (t) would not be zero, as demonstrated for the last product.
Table 1 summarizes all possible combinations of this second term.

Moreover, from this proof, theorem 3 can be generalized to any iteration
t that satisfies the following condition:

If
N∑

i=1

�i (t − 1)
∂ E
Vi

(t) ≤ 0 → E(t) ≤ E(ta ), ∀ta < t. (4.6)
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Table 1: Possible Combinations of the Second Term of Equation 4.5.

Sign of

Case �i (t − 1) �i (t) ∂ E/∂Vi (t) (�i (t − 1) + �i (t)) ∂ E/∂Vi (t)

1 + + − −
+ 0 + (Impossible combination)

3a + 0 0 0
3b + 0 − − (Vi (t) = 1)
2 + − + 0

1 0 + − −
1 0 0 + 0 (Vi (t) = 0)
1 0 0 0 0
1 0 0 − 0 (Vi (t) = 1)
1 0 − + −
2 − + − 0
3b − 0 + − (Vi (t) = 0)
3a − 0 0 0

− 0 − (Impossible combination)
1 − − + −

5 Conclusion

This letter has extended previous studies, analyzing the convergence and
stability of QHNs operating in a fully parallel mode. This analysis is in-
teresting because these neural networks are easily implementable and take
advantage of the original parallelism of HNNs.

Moreover, this letter has proved that QHNs operating in fully parallel
mode always converge to a stable state or to a cycle of length two. Moreover,
cycles are not very problematic, as shown in section 2, and this type of
network requires many fewer iterations to find a good solution of the MQP
compared with CHNs and other QHNs operating in serial mode.

Finally, although the energy does not always decrease from one iteration
to the next, the QHN dynamics always tend to decrease the energy, obtain-
ing a stable state with less energy than the initial state of the neural network.

As future work, a deep analysis of cycles would be very interesting.
Although the results of section 2 show that cycles do not damage the per-
formance of QHNs for the MQP, they could have severe consequences
in other applications. Additionally, a step forward after this letter is the
implementation—or an implementation study—of QHNs in digital devices,
like FPGAs.

Appendix

This appendix presents some technical issues about the simulations
performed in section 2. The energy function used is Le and Pham
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(2005):

E = A
2

N∑
i=1

⎛
⎝ N∑

j=1

Vi j − 1

⎞
⎠

2

+ A
2

N∑
j=1

(
N∑

i=1

Vi j − 1

)2

+ B
2

N∑
i=1

N∑
j=1

Vi j

N∑
1≤i−k, j−k≤N (k �=0)

Vi−k, j−k

+ B
2

N∑
i=1

N∑
j=1

Vi j

N∑
1≤i−k, j+k≤N (k �=0)

Vi−k, j+k, (A.1)

with A = B = 1000. All elements of the main diagonal of T are exactly −2A,
which are not nonnegative (i.e., they are negative). The CHNs were not
implemented with the analog circuit but simulated in a computer. The evo-
lution of the analog circuit can be characterized by the following differential
equation:

dVi j (t)
dt

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0,
∂ E
∂Vi j

(t) > 0, Vi j (t) = 0,

0,
∂ E
∂Vi j

(t) < 0, Vi j (t) = 1,

−αi j
∂ E
∂Vi j

(t), otherwise,

(A.2)

where αi j are constants that depend on the elements of the analog circuit.
This evolution was simulated using Euler’s technique:

Vi j (t + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Vi j (t),
∂ E
∂Vi j

(t) > 0, Vi j (t) = 0,

Vi j (t),
∂ E
∂Vi j

(t) < 0, Vi j (t) = 1,

Vi j (t) − �t
∂ E
∂Vi j

(t), otherwise,

(A.3)

with �t = 10−5. This value was selected by a trial-and-error procedure.
Lower values make the CHNs require more iterations to converge, whereas
greater values make CHNs diverge. Note that the time variable t is different
in equation A.2 than from the rest of the letter, including equation A.3. In
equation A.2, t is continuous since this equation corresponds with the actual
evolution of CHNs, which are continuous in time. In the rest of the letter, t
is an integer that represents the current iteration.
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